Advertisement

Selective progesterone receptor modulators in reproductive medicine: pharmacology, clinical efficacy and safety

Published:September 23, 2011DOI:https://doi.org/10.1016/j.fertnstert.2011.08.021

      Objective

      To discuss the mechanism of action of selective progesterone receptor modulators (SPRMs) and summarize the preclinical and clinical efficacy and safety data supporting the potential use of these compounds for gynecologic indications.

      Design

      Relevant publications from 2005 onward were identified using a PubMed search. Additional relevant articles were identified from citations within these publications.

      Setting

      None.

      Patient(s)

      None.

      Intervention(s)

      None.

      Main Outcome Measure(s)

      None.

      Result(s)

      Mifepristone was first developed as a progesterone receptor antagonist and licensed for pregnancy termination because of the unique property of this compound to terminate pregnancy when associated with prostaglandins. Then SPRMs were developed, and among those ulipristal acetate, an efficient emergency contraceptive. Because SPRMs effectively inhibit endometrial proliferation and reduce endometriotic lesions in animal models, this suggests a possible role in the treatment of endometriosis in humans. Finally, a number of double-blind, randomized, placebo-controlled trials have demonstrated the efficacy of asoprisnil, mifepristone, telapristone acetate, and ulipristal acetate in reducing leiomyoma and uterine volume, and suppressing bleeding in women with uterine fibroids.

      Conclusion(s)

      Mifepristone in combination with prostaglandins has been licensed for pregnancy termination because of its unique ability is this area. Ulipristal acetate is available for emergency contraception. Several SPRMs hold further promise as an effective medical therapy for patients suffering from endometriosis and leiomyoma.

      Key Words

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Fertility and Sterility
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Rocha A.
        • Soares R.
        Unraveling progesterone-induced molecular mechanisms in physiological and pathological conditions.
        Curr Clin Pharmacol. 2009; 4: 148-153
        • McEwan I.J.
        Nuclear receptors: one big family.
        Methods Mol Biol. 2009; 505: 3-18
        • Philibert D.
        RU 38486: an original multifaceted antihormone in vivo.
        in: Agarwal M. Adrenal steroid antagonism. Walter de Gruyter, Berlin1984: 77-101
        • Allan G.F.
        • Sui Z.
        Non-steroidal progesterone receptor specific ligands.
        Mini Rev Med Chem. 2005; 5: 701-708
        • Chabbert-Buffet N.
        • Ouzounian S.
        • Kairis A.P.
        • Bouchard P.
        Contraceptive applications of progesterone receptor modulators.
        Eur J Contracept Reprod Health Care. 2008; 13: 222-230
        • Chabbert-Buffet N.
        • Meduri G.
        • Bouchard P.
        • Spitz I.M.
        Selective progesterone receptor modulators and progesterone antagonists: mechanisms of action and clinical applications.
        Hum Reprod Update. 2005; 11: 293-307
        • Chwalisz K.
        • Perez M.C.
        • Demanno D.
        • Winkel C.
        • Schubert G.
        • Elger W.
        Selective progesterone receptor modulator development and use in the treatment of leiomyomata and endometriosis.
        Endocr Rev. 2005; 26: 423-438
        • Conneely O.M.
        • Mulac-Jericevic B.
        • DeMayo F.
        • Lydon J.P.
        • O’Malley B.W.
        Reproductive functions of progesterone receptors.
        Recent Prog Horm Res. 2002; 57: 339-355
        • Mesiano S.
        • Welsh T.N.
        Steroid hormone control of myometrial contractility and parturition.
        Semin Cell Dev Biol. 2007; 18: 321-331
        • Conneely O.M.
        • Jericevic B.M.
        • Lydon J.P.
        Progesterone receptors in mammary gland development and tumorigenesis.
        J Mammary Gland Biol Neoplasia. 2003; 8: 205-214
        • Li Q.
        • Kannan A.
        • DeMayo F.J.
        • Lydon J.P.
        • Cooke P.S.
        • Yamagishi H.
        • et al.
        The antiproliferative action of progesterone in uterine epithelium is mediated by Hand2.
        Science. 2011; 331: 912-916
        • Scarpin K.M.
        • Graham J.D.
        • Mote P.A.
        • Clarke C.L.
        Progesterone action in human tissues: regulation by progesterone receptor (PR) isoform expression, nuclear positioning and coregulator expression.
        Nucl Recept Signal. 2009; 7: e009
        • Leonhardt S.A.
        • Edwards D.P.
        Mechanism of action of progesterone antagonists.
        Exp Biol Med (Maywood). 2002; 227: 969-980
        • Boonyaratanakornkit V.
        • Edwards D.P.
        Receptor mechanisms mediating non-genomic actions of sex steroids.
        Semin Reprod Med. 2007; 25: 139-153
        • Blaustein J.D.
        Minireview: neuronal steroid hormone receptors: they’re not just for hormones anymore.
        Endocrinology. 2004; 145: 1075-1081
        • Lydon J.P.
        • DeMayo F.J.
        • Funk C.R.
        • Mani S.K.
        • Hughes A.R.
        • Montgomery Jr., C.A.
        • et al.
        Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities.
        Genes Dev. 1995; 9: 2266-2278
        • Giangrande P.H.
        • Pollio G.
        • McDonnell D.P.
        Mapping and characterization of the functional domains responsible for the differential activity of the A and B isoforms of the human progesterone receptor.
        J Biol Chem. 1997; 272: 32889-32900
        • Giangrande P.H.
        • McDonnell D.P.
        The A and B isoforms of the human progesterone receptor: two functionally different transcription factors encoded by a single gene.
        Recent Prog Horm Res. 1999; 54: 291-314
        • Giangrande P.H.
        • Kimbrel E.A.
        • Edwards D.P.
        • McDonnell D.P.
        The opposing transcriptional activities of the two isoforms of the human progesterone receptor are due to differential cofactor binding.
        Mol Cell Biol. 2000; 20: 3102-3115
        • Conneely O.M.
        • Mulac-Jericevic B.
        • Lydon J.P.
        • De Mayo F.J.
        Reproductive functions of the progesterone receptor isoforms: lessons from knock-out mice.
        Mol Cell Endocrinol. 2001; 179: 97-103
        • Mulac-Jericevic B.
        • Lydon J.P.
        • DeMayo F.J.
        • Conneely O.M.
        Defective mammary gland morphogenesis in mice lacking the progesterone receptor B isoform.
        Proc Natl Acad Sci USA. 2003; 100: 9744-9749
        • Arnett-Mansfield R.L.
        • DeFazio A.
        • Mote P.A.
        • Clarke C.L.
        Subnuclear distribution of progesterone receptors A and B in normal and malignant endometrium.
        J Clin Endocrinol Metab. 2004; 89: 1429-1442
        • Mote P.A.
        • Bartow S.
        • Tran N.
        • Clarke C.L.
        Loss of co-ordinate expression ofprogesterone receptors A and B is an early event in breast carcinogenesis.
        Breast Cancer Res Treat. 2002; 72: 163-172
        • Chabbert-Buffet N.
        • Skinner D.C.
        • Caraty A.
        • Bouchard P.
        Neuroendocrine effects of progesterone.
        Steroids. 2000; 65: 613-620
        • McPhail M.K.
        The assay of progestin.
        J Physiol. 1934; 83: 145-156
        • Elger W.
        • Bartley J.
        • Schneider B.
        • Kaufmann G.
        • Schubert G.
        • Chwalisz K.
        Endocrine pharmacological characterization of progesterone antagonists and progesterone receptor modulators with respect to PR-agonistic and antagonistic activity.
        Steroids. 2000; 65: 713-723
        • Afhüppe W.
        • Sommer A.
        • Müller J.
        • Schwede W.
        • Fuhrmann U.
        • Möller C.
        Global gene expression profiling of progesterone receptor modulators in T47D cells provides a new classification system.
        J Steroid Biochem Mol Biol. 2009; 113: 105-115
        • Smith C.L.
        • O’Malley B.W.
        Coregulator function: a key to understanding tissue specificity of selective receptor modulators.
        Endocr Rev. 2004; 25: 45-71
        • Madauss K.P.
        • Grygielko E.T.
        • Deng S.J.
        • Sulpizio A.C.
        • Stanley T.B.
        • Wu C.
        • et al.
        A structural and in vitro characterization of asoprisnil: a selective progesterone receptor modulator.
        Mol Endocrinol. 2007; 21: 1066-1081
        • Wardell S.E.
        • Edwards D.P.
        Mechanisms controlling agonist and antagonist potential of selective progesterone receptor modulators (SPRMs).
        Semin Reprod Med. 2005; 23: 9-21
        • Tung L.
        • Mohamed M.K.
        • Hoeffler J.P.
        • Takimoto G.S.
        • Horwitz K.B.
        Antagonist-occupied human progesterone B-receptors activate transcription without binding to progesterone response elements and are dominantly inhibited by A-receptors.
        Mol Endocrinol. 1993; 7: 1256-1265
        • Leo J.C.
        • Lin V.C.
        The activities of progesterone receptor isoform A and B are differentially modulated by their ligands in a gene-selective manner.
        Int J Cancer. 2008; 122: 230-243
        • Amazit L.
        • Roseau A.
        • Khan J.A.
        • Chauchereau A.
        • Tyagi R.K.
        • Loosfelt H.
        • et al.
        Ligand-dependent degradation of SRC-1 is pivotal for progesterone receptor transcriptional activity.
        Mol Endocrinol. 2011; 25: 394-408
        • Madauss K.P.
        • Stewart E.L.
        • Williams S.P.
        The evolution of progesterone receptor ligands.
        Med Res Rev. 2007; 27: 374-400
        • Johanssen S.
        • Allolio B.
        Mifepristone (RU 486) in Cushing’s syndrome.
        Eur J Endocrinol. 2007; 157: 561-569
        • Schubert G.
        • Elger W.
        • Kaufmann G.
        • Schneider B.
        • Reddersen G.
        • Chwalisz K.
        Discovery, chemistry, and reproductive pharmacology of asoprisnil and related 11β-benzaldoxime substituted selective progesterone receptor modulators (SPRMs).
        Semin Reprod Med. 2005; 23: 58-73
        • Attardi B.J.
        • Burgenson J.
        • Hild S.A.
        • Reel J.R.
        In vitro antiprogestational/antiglucocorticoid activity and progestin and glucocorticoid receptor binding of the putative metabolites and synthetic derivatives of CDB-2914, CDB-4124, and mifepristone.
        J Steroid Biochem Mol Biol. 2004; 88: 277-288
        • Winneker R.C.
        • Fensome A.
        • Zhang P.
        • Yudt M.R.
        • McComas C.C.
        • Unwalla R.J.
        A new generation of progesterone receptor modulators.
        Steroids. 2008; 73: 689-701
        • Zhi L.
        Discovery of structurally diverse nonsteroidal SPRMs based on a screening hit, 1,2-dihydro-2,2,4-trimethyl-6-phenylquinolinone.
        Curr Top Med Chem. 2008; 8: 766-780
        • Rewinkel J.
        • Enthoven M.
        • Golstein I.
        • van der R.M.
        • Scholten A.
        • van Tilborg M.
        • et al.
        11-(pyridinylphenyl)steroids—a new class of mixed-profile progesterone agonists/antagonists.
        Bioorg Med Chem. 2008; 16: 2753-2763
        • Schaff E.A.
        Mifepristone: ten years later.
        Contraception. 2010; 81: 1-7
        • Im A.
        • Appleman L.J.
        Mifepristone: pharmacology and clinical impact in reproductive medicine, endocrinology and oncology.
        Expert Opin Pharmacother. 2010; 11: 481-488
        • Baird D.T.
        • Thong K.J.
        • Hall C.
        • Cameron S.T.
        Failure of oestrogen induced luteinizing hormone surge in women treated with mifepristone (RU 486) every day for 30 days.
        Hum Reprod. 1995; 10: 2270-2276
        • Chabbert-Buffet N.
        • Pintiaux-Kairis A.
        • Bouchard P.
        Effects of the progesterone receptor modulator VA2914 in a continuous low dose on the hypothalamic-pituitary-ovarian axis and endometrium in normal women: a prospective, randomized, placebo-controlled trial.
        J Clin Endocrinol Metab. 2007; 92: 3582-3589
        • Chwalisz K.
        • Elger W.
        • Stickler T.
        • Mattia-Goldberg C.
        • Larsen L.
        The effects of 1-month administration of asoprisnil (J867), a selective progesterone receptor modulator, in healthy premenopausal women.
        Hum Reprod. 2005; 20: 1090-1099
        • Croxatto H.B.
        • Salvatierra A.M.
        • Croxatto H.D.
        • Fuentealba B.
        Effects of continuous treatment with low dose mifepristone throughout one menstrual cycle.
        Hum Reprod. 1993; 8: 201-207
        • Liu J.H.
        • Garzo G.
        • Morris S.
        • Stuenkel C.
        • Ulmann A.
        • Yen S.S.
        Disruption of follicular maturation and delay of ovulation after administration of the antiprogesterone RU486.
        J Clin Endocrinol Metab. 1987; 65: 1135-1140
        • Chwalisz K.
        • Garg R.
        • Brenner R.
        • Slayden O.
        • Winkel C.
        • Elger W.
        Role of nonhuman primate models in the discovery and clinical development of selective progesterone receptor modulators (SPRMs).
        Reprod Biol Endocrinol. 2006; 4: S8
        • Stratton P.
        • Levens E.D.
        • Hartog B.
        • Piquion J.
        • Wei Q.
        • Merino M.
        • et al.
        Endometrial effects of a single early luteal dose of the selective progesterone receptor modulator CDB-2914.
        Fertil Steril. 2009; 93: 2035-2041
        • Chwalisz K.
        • Larsen L.
        • Mattia-Goldberg C.
        • Edmonds A.
        • Elger W.
        • Winkel C.A.
        A randomized, controlled trial of asoprisnil, a novel selective progesterone receptor modulator, in women with uterine leiomyomata.
        Fertil Steril. 2007; 87: 1399-1412
        • Levens E.D.
        • Potlog-Nahari C.
        • Armstrong A.Y.
        • Wesley R.
        • Premkumar A.
        • Blithe D.L.
        • et al.
        CDB-2914 for uterine leiomyomata treatment: a randomized controlled trial.
        Obstet Gynecol. 2008; 111: 1129-1136
        • van der Stege J.G.
        • Pahl-van Beest E.H.
        • Beerthuizen R.J.
        • van Lunsen R.H.
        • Scholten P.C.
        • Bogchelman D.H.
        Effects of a preovulatory single low dose of mifepristone on ovarian function.
        Eur J Contracept Reprod Health Care. 2006; 11: 104-108
        • Leminen R.
        • Raivio T.
        • Ranta S.
        • Oehler J.
        • von Hertzen H.
        • Jänne O.A.
        • et al.
        Late follicular phase administration of mifepristone suppresses circulating leptin and FSH—mechanism(s) of action in emergency contraception?.
        Eur J Endocrinol. 2005; 152: 411-418
        • Sengupta J.
        • Dhawan L.
        • Lalitkumar P.G.
        • Ghosh D.
        A multiparametric study of the action of mifepristone used in emergency contraception using the Rhesus monkey as a primate model.
        Contraception. 2003; 68: 453-469
        • Stratton P.
        • Hartog B.
        • Hajizadeh N.
        • Piquion J.
        • Sutherland D.
        • Merino M.
        • et al.
        A single mid-follicular dose of CDB-2914, a new antiprogestin, inhibits folliculogenesis and endometrial differentiation in normally cycling women.
        Hum Reprod. 2000; 15: 1092-1099
        • Reel J.R.
        • Hild-Petito S.
        • Blye R.P.
        Antiovulatory and postcoital antifertility activity of the antiprogestin CDB-2914 when administered as single, multiple, or continuous doses to rats.
        Contraception. 1998; 58: 129-136
        • Banaszak S.
        • Brudney A.
        • Donnelly K.
        • Chai D.
        • Chwalisz K.
        • Fazleabas A.T.
        Modulation of the action of chorionic gonadotropin in the baboon (Papio anubis) uterus by a progesterone receptor antagonist (ZK 137.316).
        Biol Reprod. 2000; 63: 820-825
        • Lalitkumar P.G.
        • Lalitkumar S.
        • Meng C.X.
        • Stavreus-Evers A.
        • Hambiliki F.
        • Bentin-Ley U.
        • et al.
        Mifepristone, but not levonorgestrel, inhibits human blastocyst attachment to an in vitro endometrial three-dimensional cell culture model.
        Hum Reprod. 2007; 22: 3031-3037
        • Petersen A.
        • Bentin-Ley U.
        • Ravn V.
        • Qvortrup K.
        • Sorensen S.
        • Islin H.
        • et al.
        The antiprogesterone Org 31710 inhibits human blastocyst-endometrial interactions in vitro.
        Fertil Steril. 2005; 83: 1255-1263
        • Meng C.X.
        • Andersson K.L.
        • Bentin-Ley U.
        • Gemzell-Danielsson K.
        • Lalitkumar P.G.
        Effect of levonorgestrel and mifepristone on endometrial receptivity markers in a three-dimensional human endometrial cell culture model.
        Fertil Steril. 2009; 91: 256-264
        • Creinin M.D.
        • Schlaff W.
        • Archer D.F.
        • Wan L.
        • Frezieres R.
        • Thomas M.
        • et al.
        Progesterone receptor modulator for emergency contraception: a randomized controlled trial.
        Obstet Gynecol. 2006; 108: 1089-1097
        • Fine P.
        • Mathé H.
        • Ginde S.
        • Cullins V.
        • Morfesis J.
        • Gainer E.
        Ulipristal acetate taken 48–120 hours after intercourse for emergency contraception.
        Obstet Gynecol. 2010; 115: 257-263
        • Glasier A.F.
        • Cameron S.T.
        • Fine P.M.
        • Logan S.J.
        • Casale W.
        • Van Horn J.
        • et al.
        Ulipristal acetate versus levonorgestrel for emergency contraception: a randomised non-inferiority trial and meta-analysis.
        Lancet. 2010; 375: 555-562
        • Jin J.
        • Weisberg E.
        • Fraser I.S.
        Comparison of three single doses of mifepristone as emergency contraception: a randomised controlled trial.
        Aust NZ J Obstet Gynaecol. 2005; 45: 489-494
        • Esteve J.L.
        • García R.
        • Breto A.
        • Llorente M.
        Emergency contraception in Cuba with 10 mg of mifepristone.
        Eur J Contracept Reprod Health Care. 2007; 12: 162-167
        • Taneepanichskul S.
        Emergency contraception with mifepristone 10 mg in Thai women.
        J Med Assoc Thai. 2009; 92: 999-1002
        • Wu S.
        • Dong J.
        • Cong J.
        • Wang C.
        • VonHertzen H.
        • Godfrey E.M.
        Gestrinone compared with mifepristone for emergency contraception: a randomized controlled trial.
        Obstet Gynecol. 2010; 115: 740-744
        • Lakha F.
        • Ho P.C.
        • Van der Spuy Z.M.
        • Dada K.
        • Elton R.
        • Glasier A.F.
        • et al.
        A novel estrogen-free oral contraceptive pill for women: multicentre, double-blind, randomized controlled trial of mifepristone and progestogen-only pill (levonorgestrel).
        Hum Reprod. 2007; 22: 2428-2436
        • Pei K.
        • Xiao B.
        • Jing X.
        • Lu S.
        • Wei L.
        • Zhao H.
        Weekly contraception with mifepristone.
        Contraception. 2007; 75: 40-44
        • Agarwal M.
        • Das V.
        • Agarwal A.
        • Pandey A.
        • Srivastava D.
        Evaluation of mifepristone as a once a month contraceptive pill.
        Am J Obstet Gynecol. 2009; 200: e27-e29
        • Nieman L.K.
        • Blocker W.
        • Nansel T.
        • Mahoney S.
        • Reynolds J.
        • Blithe D.
        • et al.
        Efficacy and tolerability of CDB-2914 treatment for symptomatic uterine fibroids: a randomized, double-blind, placebo-controlled, phase IIb study.
        Fertil Steril. 2011; 95 (e1–2): 767-772
        • Wilkens J.
        • Chwalisz K.
        • Han C.
        • Walker J.
        • Cameron I.T.
        • Ingamells S.
        • et al.
        Effects of the selective progesterone receptor modulator asoprisnil on uterine artery blood flow, ovarian activity, and clinical symptoms in patients with uterine leiomyomata scheduled for hysterectomy.
        J Clin Endocrinol Metab. 2008; 93: 4664-4671
        • Wiehle R.
        • Goldberg J.
        • Brodniewicz T.
        • Jarus-Dziedzic K.
        • Jabiry-Zieniewicz Z.
        Effects of a new progesterone receptor modulator, CDB-4124, on fibroid size and uterine bleeding.
        US Obstetr Gynaecol. 2008; 3: 17-20
        • Eisinger S.H.
        • Bonfiglio T.
        • Fiscella K.
        • Meldrum S.
        • Guzick D.S.
        Twelve-month safety and efficacy of low-dose mifepristone for uterine myomas.
        J Minim Invasive Gynecol. 2005; 12: 227-233
        • Fiscella K.
        • Eisinger S.H.
        • Meldrum S.
        • Feng C.
        • Fisher S.G.
        • Guzick D.S.
        Effect of mifepristone for symptomatic leiomyomata on quality of life and uterine size: a randomized controlled trial.
        Obstet Gynecol. 2006; 108: 1381-1387
        • Carbonell Esteve J.L.
        • Acosta R.
        • Heredia B.
        • Perez Y.
        • Castaneda M.C.
        • Hernandez A.V.
        Mifepristone for the treatment of uterine leiomyomas: a randomized controlled trial.
        Obstet Gynecol. 2008; 112: 1029-1036
        • Bagaria M.
        • Suneja A.
        • Vaid N.B.
        • Guleria K.
        • Mishra K.
        Low-dose mifepristone in treatment of uterine leiomyoma: a randomised double-blind placebo-controlled clinical trial.
        Aust NZ J Obstet Gynaecol. 2009; 49: 77-83
        • Eisinger S.H.
        • Fiscella J.
        • Bonfiglio T.
        • Meldrum S.
        • Fiscella K.
        Open-label study of ultra low-dose mifepristone for the treatment of uterine leiomyomata.
        Eur J Obstet Gynecol Reprod Biol. 2009; 146: 215-218
        • Engman M.
        • Granberg S.
        • Williams A.R.
        • Meng C.X.
        • Lalitkumar P.G.
        • Gemzell-Danielsson K.
        Mifepristone for treatment of uterine leiomyoma: a prospective randomized placebo controlled trial.
        Hum Reprod. 2009; 24: 1870-1879
        • Feng C.
        • Meldrum S.
        • Fiscella K.
        Improved quality of life is partly explained by fewer symptoms after treatment of fibroids with mifepristone.
        Int J Gynaecol Obstet. 2010; 109: 121-124
        • Cheng L.
        • Gulmezoglu A.M.
        • Piaggio G.
        • Ezcurra E.
        • Van Look P.F.
        Interventions for emergency contraception.
        Cochrane Database Syst Rev. 2008; 2: CD001324
        • Fiala C.
        • Gemzel-Danielsson K.
        Review of medical abortion using mifepristone in combination with a prostaglandin analogue.
        Contraception. 2006; 74: 66-86
        • Marions L.
        Mifepristone dose in the regimen with misoprostol for medical abortion.
        Contraception. 2006; 74: 21-25
        • Schreiber C.
        • Creinin M.
        Mifepristone in abortion care.
        Semin Reprod Med. 2005; 23: 82-91
        • Bedaiwy M.A.
        • Abdel-Aleem M.A.
        • Miketa A.
        • Falcone T.
        Endometriosis: a critical appraisal of the advances and the controversies of a challenging health problem.
        Minerva Ginecol. 2009; 61: 285-298
        • Signorile P.G.
        • Baldi A.
        Endometriosis: new concepts in the pathogenesis.
        Int J Biochem Cell Biol. 2010; 42: 778-780
        • Eskenazi B.
        • Warner M.L.
        Epidemiology of endometriosis.
        Obstet Gynecol Clin North Am. 1997; 24: 235-258
        • Crosignani P.
        • Olive D.
        • Bergqvist A.
        • Luciano A.
        Advances in the management of endometriosis: an update for clinicians.
        Hum Reprod Update. 2006; 12: 179-189
        • Brenner R.M.
        • Slayden O.D.
        • Nath A.
        • Tsong Y.Y.
        • Sitruk-Ware R.
        Intrauterine administration of CDB-2914 (Ulipristal) suppresses the endometrium of rhesus macaques.
        Contraception. 2010; 81: 336-342
        • Gopalkrishnan K.
        • Katkam R.R.
        • Sachdeva G.
        • Kholkute S.D.
        • Padwal V.
        • Puri C.P.
        Effects of an antiprogestin onapristone on the endometrium of bonnet monkeys: morphometric and ultrastructural studies.
        Biol Reprod. 2003; 68: 1959-1967
        • Zhang Z.
        • Lundeen S.G.
        • Slayden O.
        • Zhu Y.
        • Cohen J.
        • Berrodin T.J.
        • et al.
        In vitro and in vivo characterization of a novel nonsteroidal, species-specific progesterone receptor modulator, PRA-910.
        Ernst Schering Found Symp Proc. 2007; : 171-197
        • Wu Y.
        • Guo S.W.
        Inhibition of proliferation of endometrial stromal cells by trichostatin A, RU486, CDB-2914, N-acetylcysteine, and ICI 182780.
        Gynecol Obstet Invest. 2006; 62: 193-205
        • Moe B.G.
        • Vereide A.B.
        • Orbo A.
        • Sager G.
        High concentrations of progesterone and mifepristone mutually reinforce cell cycle retardation and induction of apoptosis.
        Anticancer Res. 2009; 29: 1053-1058
        • Ioffe O.B.
        • Zaino R.J.
        • Mutter G.L.
        Endometrial changes from short-term therapy with CDB-4124, a selective progesterone receptor modulator.
        Mod Pathol. 2009; 22: 450-459
        • Wilkens J.
        • Williams A.R.
        • Chwalisz K.
        • Han C.
        • Cameron I.T.
        • Critchley H.O.
        Effect of asoprisnil on uterine proliferation markers and endometrial expression of the tumour suppressor gene, PTEN.
        Hum Reprod. 2009; 24: 1036-1044
        • Heikinheimo O.
        • Vani S.
        • Carpen O.
        • Tapper A.
        • Harkki P.
        • Rutanen E.M.
        • et al.
        Intrauterine release of progesterone antagonist ZK230211 is feasible and results in novel endometrial effects: a pilot study.
        Hum Reprod. 2007; 22: 2515-2522
        • Williams A.R.
        • Critchley H.O.
        • Osei J.
        • Ingamells S.
        • Cameron I.T.
        • Han C.
        • et al.
        The effects of the selective progesterone receptor modulator asoprisnil on the morphology of uterine tissues after 3 months treatment in patients with symptomatic uterine leiomyomata.
        Hum Reprod. 2007; 22: 1696-1704
        • Baird D.T.
        • Brown A.
        • Critchley H.O.
        • Williams A.R.
        • Lin S.
        • Cheng L.
        Effect of long-term treatment with low-dose mifepristone on the endometrium.
        Hum Reprod. 2003; 18: 61-68
        • Grow D.R.
        • Williams R.F.
        • Hsiu J.G.
        • Hodgen G.D.
        Antiprogestin and/or gonadotropin-releasing hormone agonist for endometriosis treatment and bone maintenance: a 1-year primate study.
        J Clin Endocrinol Metab. 1996; 81: 1933-1939
        • Stoeckemann K.
        • Hegele-Hartung C.
        • Chwalisz K.
        Effects of the progesterone antagonists onapristone (ZK 98 299) and ZK 136 799 on surgically induced endometriosis in intact rats.
        Hum Reprod. 1995; 10: 3264-3271
        • Elger W.
        • Ivell R.
        • Nandy A.
        • Rasch A.
        • Triller A.
        • Chwalisz K.
        Modulation of uterine prostaglandin secretion by the selective progesterone receptor modulator (SPRM) asoprisnil, progestins, and antiprogestins in cycling and ovariectomized guinea pigs.
        Fertil Steril. 2004; 82: S316
        • Gemzell-Danielsson K.
        • Hamberg M.
        The effect of antiprogestin (RU 486) and prostaglandin biosynthesis inhibitor (naproxen) on uterine fluid prostaglandin F2 alpha concentrations.
        Hum Reprod. 1994; 9: 1626-1630
        • Kettel L.M.
        • Murphy A.A.
        • Morales A.J.
        • Ulmann A.
        • Baulieu E.E.
        • Yen S.S.
        Treatment of endometriosis with the antiprogesterone mifepristone (RU486).
        Fertil Steril. 1996; 65: 23-28
        • Kettel L.M.
        • Murphy A.A.
        • Morales A.J.
        • Yen S.S.
        Preliminary report on the treatment of endometriosis with low-dose mifepristone (RU 486).
        Am J Obstet Gynecol. 1998; 178: 1151-1156
        • Mei L.
        • Bao J.
        • Tang L.
        • Zhang C.
        • Wang H.
        • Sun L.
        • et al.
        A novel mifepristone-loaded implant for long-term treatment of endometriosis: in vitro and in vivo studies.
        Eur J Pharm Sci. 2010; 39: 421-427
        • Chwalisz K.
        • Mattia-Goldberg C.
        • Elger W.
        • Edmonds A.
        Treatment of endometriosis with the novel selective progesterone receptor modulator (SPRM) asoprisnil.
        Fertil Steril. 2004; 82: S83-S84
        • Spitz I.M.
        Clinical utility of progesterone receptor modulators and their effect on the endometrium.
        Curr Opin Obstet Gynecol. 2009; 21: 318-324
        • Chwalisz K.
        • Brenner R.M.
        • Fuhrmann U.U.
        • Hess-Stumpp H.
        • Elger W.
        Antiproliferative effects of progesterone antagonists and progesterone receptor modulators on the endometrium.
        Steroids. 2000; 65: 741-751
        • Nayak N.R.
        • Slayden O.D.
        • Mah K.
        • Chwalisz K.
        • Brenner R.M.
        Antiprogestin-releasing intrauterine devices: a novel approach to endometrial contraception.
        Contraception. 2007; 75: S104-S111
        • Ravet S.
        • Munaut C.
        • Blacher S.
        • Brichant G.
        • Labied S.
        • Beliard A.
        • et al.
        Persistence of an intact endometrial matrix and vessels structure in women exposed to VA-2914, a selective progesterone receptor modulator.
        J Clin Endocrinol Metab. 2008; 93: 4525-4531
        • Stephanie R.
        • Labied S.
        • Blacher S.
        • Frankenne F.
        • Munaut C.
        • Fridman V.
        • et al.
        Endometrial vessel maturation in women exposed to levonorgestrel-releasing intrauterine system for a short or prolonged period of time.
        Hum Reprod. 2007; 22: 3084-3091
        • Gemzell-Danielsson K.
        • van Heusden A.M.
        • Killick S.R.
        • Croxatto H.B.
        • Bouchard P.
        • Cameron S.
        • et al.
        Improving cycle control in progestogen-only contraceptive pill users by intermittent treatment with a new anti-progestogen.
        Hum Reprod. 2002; 17: 2588-2593
        • Massai M.R.
        • Pavez M.
        • Fuentealba B.
        • Croxatto H.B.
        • d’Arcangues C.
        Effect of intermittent treatment with mifepristone on bleeding patterns in Norplant implant users.
        Contraception. 2004; 70: 47-54
        • Parker W.H.
        Etiology, symptomatology, and diagnosis of uterine myomas.
        Fertil Steril. 2007; 87: 725-736
        • Miller C.E.
        Unmet therapeutic needs for uterine myomas.
        J Minim Invasive Gynecol. 2009; 16: 11-21
        • Catherino W.H.
        • Parrott E.
        • Segars J.
        Proceedings from the National Institute of Child Health and Human Development conference on the Uterine Fibroid Research Update Workshop.
        Fertil Steril. 2011; 95: 9-12
        • Nisolle M.
        • Gillerot S.
        • Casanas-Roux F.
        • Squifflet J.
        • Berliere M.
        • Donnez J.
        Immunohistochemical study of the proliferation index, oestrogen receptors and progesterone receptors A and B in leiomyomata and normal myometrium during the menstrual cycle and under gonadotrophin-releasing hormone agonist therapy.
        Hum Reprod. 1999; 14: 2844-2850
        • Brandon D.D.
        • Bethea C.L.
        • Strawn E.Y.
        • Novy M.J.
        • Burry K.A.
        • Harrington M.S.
        • et al.
        Progesterone receptor messenger ribonucleic acid and protein are overexpressed in human uterine leiomyomas.
        Am J Obstet Gynecol. 1993; 169: 78-85
        • Englund K.
        • Blanck A.
        • Gustavsson I.
        • Lundkvist U.
        • Sjöblom P.
        • Norgren A.
        • et al.
        Sex steroid receptors in human myometrium and fibroids: changes during the menstrual cycle and gonadotropin-releasing hormone treatment.
        J Clin Endocrinol Metab. 1998; 83: 4092-4096
        • Chen W.
        • Ohara N.
        • Wang J.
        • Xu Q.
        • Liu J.
        • Morikawa A.
        • et al.
        A novel selective progesterone receptor modulator asoprisnil (J867) inhibits proliferation and induces apoptosis in cultured human uterine leiomyoma cells in the absence of comparable effects on myometrial cells.
        J Clin Endocrinol Metab. 2006; 91: 1296-1304
        • Shimomura Y.
        • Matsuo H.
        • Samoto T.
        • Maruo T.
        Up-regulation by progesterone of proliferating cell nuclear antigen and epidermal growth factor expression in human uterine leiomyoma.
        J Clin Endocrinol Metab. 1998; 83: 2192-2198
        • Matsuo H.
        • Kurachi O.
        • Shimomura Y.
        • Samoto T.
        • Maruo T.
        Molecular bases for the actions of ovarian sex steroids in the regulation of proliferation and apoptosis of human uterine leiomyoma.
        Oncology. 1999; 57: 49-58
        • Maruo T.
        • Matsuo H.
        • Samoto T.
        • Shimomura Y.
        • Kurachi O.
        • Gao Z.
        • et al.
        Effects of progesterone on uterine leiomyoma growth and apoptosis.
        Steroids. 2000; 65: 585-592
        • Matsuo H.
        • Maruo T.
        • Samoto T.
        Increased expression of Bcl-2 protein in human uterine leiomyoma and its up-regulation by progesterone.
        J Clin Endocrinol Metab. 1997; 82: 293-299
        • Ishikawa H.
        • Ishi K.
        • Serna V.A.
        • Kakazu R.
        • Bulun S.E.
        • Kurita T.
        Progesterone is essential for maintenance and growth of uterine leiomyoma.
        Endocrinology. 2010; 151: 2433-2442
        • Lumsden M.A.
        Modern management of fibroids.
        Obstet Gynecol Reprod Med. 2010; 20: 82-86
        • Luo X.
        • Yin P.
        • Coon V.J.
        • Cheng Y.H.
        • Wiehle R.D.
        • Bulun S.E.
        The selective progesterone receptor modulator CDB4124 inhibits proliferation and induces apoptosis in uterine leiomyoma cells.
        Fertil Steril. 2010; 93: 2668-2673
        • Maruo T.
        • Ohara N.
        • Matsuo H.
        • Xu Q.
        • Chen W.
        • Sitruk-Ware R.
        • et al.
        Effects of levonorgestrel-releasing IUS and progesterone receptor modulator PRM CDB-2914 on uterine leiomyomas.
        Contraception. 2007; 75: S99-S103
        • Xu Q.
        • Takekida S.
        • Ohara N.
        • Chen W.
        • Sitruk-Ware R.
        • Johansson E.D.
        • et al.
        Progesterone receptor modulator CDB-2914 down-regulates proliferative cell nuclear antigen and Bcl-2 protein expression and up-regulates caspase-3 and poly(adenosine 5’-diphosphate-ribose) polymerase expression in cultured human uterine leiomyoma cells.
        J Clin Endocrinol Metab. 2005; 90: 953-961
        • Xu Q.
        • Ohara N.
        • Liu J.
        • Nakabayashi K.
        • Demanno D.
        • Chwalisz K.
        • et al.
        Selective progesterone receptor modulator asoprisnil induces endoplasmic reticulum stress in cultured human uterine leiomyoma cells.
        Am J Physiol Endocrinol Metab. 2007; 293: E1002-E1011
        • Sasaki H.
        • Ohara N.
        • Xu Q.
        • Wang J.
        • DeManno D.A.
        • Chwalisz K.
        • et al.
        A novel selective progesterone receptor modulator asoprisnil activates tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated signaling pathway in cultured human uterine leiomyoma cells in the absence of comparable effects on myometrial cells.
        J Clin Endocrinol Metab. 2007; 92: 616-623
        • Wang J.
        • Ohara N.
        • Wang Z.
        • Chen W.
        • Morikawa A.
        • Sasaki H.
        • et al.
        A novel selective progesterone receptor modulator asoprisnil (J867) down-regulates the expression of EGF, IGF-I, TGFβ3 and their receptors in cultured uterine leiomyoma cells.
        Hum Reprod. 2006; 21: 1869-1877
        • Xu Q.
        • Ohara N.
        • Chen W.
        • Liu J.
        • Sasaki H.
        • Morikawa A.
        • et al.
        Progesterone receptor modulator CDB-2914 down-regulates vascular endothelial growth factor, adrenomedullin and their receptors and modulates progesterone receptor content in cultured human uterine leiomyoma cells.
        Hum Reprod. 2006; 21: 2408-2416
        • Xu Q.
        • Ohara N.
        • Liu J.
        • Amano M.
        • Sitruk-Ware R.
        • Yoshida S.
        • et al.
        Progesterone receptor modulator CDB-2914 induces extracellular matrix metalloproteinase inducer in cultured human uterine leiomyoma cells.
        Mol Hum Reprod. 2008; 14: 181-191
        • Morikawa A.
        • Ohara N.
        • Xu Q.
        • Nakabayashi K.
        • DeManno D.A.
        • Chwalisz K.
        • et al.
        Selective progesterone receptor modulator asoprisnil down-regulates collagen synthesis in cultured human uterine leiomyoma cells through up-regulating extracellular matrix metalloproteinase inducer.
        Hum Reprod. 2008; 23: 944-951
        • Gellersen B.
        • Fernandes M.S.
        • Brosens J.J.
        Non-genomic progesterone actions in female reproduction.
        Hum Reprod Update. 2009; 15: 119-138
        • Ismail P.M.
        • Amato P.
        • Soyal S.M.
        • DeMayo F.J.
        • Conneely O.M.
        • O’Malley B.W.
        • et al.
        Progesterone involvement in breast development and tumorigenesis—as revealed by progesterone receptor “knockout” and “knockin” mouse models.
        Steroids. 2003; 68: 779-787
        • Poole A.J.
        • Li Y.
        • Kim Y.
        • Lin S.C.
        • Lee W.H.
        • Lee E.Y.
        Prevention of Brca1-mediated mammary tumorigenesis in mice by a progesterone antagonist.
        Science. 2006; 314: 1467-1470
        • Benagiano G.
        • Bastianelli C.
        • Farris M.
        Selective progesterone receptor modulators 3: use in oncology, endocrinology and psychiatry.
        Expert Opin Pharmacother. 2008; 9: 2487-2496
        • Li M.
        • Spitzer E.
        • Zschiesche W.
        • Binas B.
        • Parczyk K.
        • Grosse R.
        Antiprogestins inhibit growth and stimulate differentiation in the normal mammary gland.
        J Cell Physiol. 1995; 164: 1-8
        • Engman M.
        • Skoog L.
        • Söderqvist G.
        • Gemzell-Danielsson K.
        The effect of mifepristone on breast cell proliferation in premenopausal women evaluated through fine needle aspiration cytology.
        Hum Reprod. 2008; 23: 2072-2079
      1. Safety of treatment of uterine fibroids with asoprisnil. http://clinicaltrials gov/ct2/show/NCT00156208 2010.

      2. Abbott CM-G. Study of asoprisnil in the treatment of uterine fibroid. Available at: http://clinicaltrials.gov/ct2/show/NCT00156156. Last accessed September 14, 2011.

        • Eisinger S.H.
        • Meldrum S.
        • Fiscella K.
        • le Roux H.D.
        • Guzick D.S.
        Low-dose mifepristone for uterine leiomyomata.
        Obstet Gynecol. 2003; 101: 243-250
        • Horne F.M.
        • Blithe D.L.
        Progesterone receptor modulators and the endometrium: changes and consequences.
        Hum Reprod Update. 2007; 13: 567-580
        • Mutter G.L.
        • Bergeron C.
        • Deligdisch L.
        • Ferenczy A.
        • Glant M.
        • Merino M.
        • et al.
        The spectrum of endometrial pathology induced by progesterone receptor modulators.
        Mod Pathol. 2008; 21: 591-598
        • Williams A.
        • Bergeron C.
        • Chabbert-Buffet N.
        • Ferenczy A.
        Progesterone receptor modulator-associated endometrial changes (PAEC): a pilot histological, dose-escalation study of ulipristal acetate.
        Fact View Vision Obgyn. 2010; ([special issue, May].): 2
      3. Repros Therapeutics. Repros Therapeutics Inc. provides clarification on increased liver enzymes at highest dose in Proellex clinical program. July 23, 2009. News Blaze.com. Available at: http://newsblaze.com/story/2009072303060800003.bw/topstory.html. Accessed August 20, 2011.

      4. BioMedReports.com/ Repros Therapeutics Inc. suspends dosing of Proellex and provides update on financial status. BioMedRports, August 3, 2009. Available at: http://biomedreports.com/200908033992/repros-therapeutics-inc-suspends-dosing-of-proellexr-and-provides-update-on-financial-status.html. Accessed August 20, 2011.

      5. Repros Therapeutics. Determination of the lowest, safe and effective dose of the anti-progestin, Proellex, in healthy women. Last updated June 28, 2011. Available at: http://clinicaltrials.gov/ct2/show/NCT01187043. Accessed August 20, 2011.

        • Klijn J.G.
        • Setyono-Han B.
        • Foekens J.A.
        Progesterone antagonists and progesterone receptor modulators in the treatment of breast cancer.
        Steroids. 2000; 65: 825-830
      6. Repros Therapeutics. Repros requests lift of clinical hold on Proellex. April 05, 2010. Available at: http://www.businesswire.com/news/home/20100405005089/en/Repros-Requests-Lift-Clinical-Hold-Proellex. Accessed August 20, 2011.

        • Cameron S.T.
        • Thong K.J.
        • Baird D.T.
        Effect of daily low dose mifepristone on the ovarian cycle and on dynamics of follicle growth.
        Clin Endocrinol (Oxf). 1995; 43: 407-414
        • Lethaby A.
        • Vollenhoven B.
        • Sowter M.
        Pre-operative GnRH analogue therapy before hysterectomy or myomectomy for uterine fibroids.
        Cochrane Database Syst Rev. 2001; 2: CD000547
        • Lethaby A.
        • Vollenhoven B.
        • Sowter M.
        Efficacy of pre-operative gonadotrophin hormone releasing analogues for women with uterine fibroids undergoing hysterectomy or myomectomy: a systematic review.
        BJOG. 2002; 109: 1097-1108