Advertisement

Effects of chemotherapy and radiotherapy on spermatogenesis in humans

  • Marvin L. Meistrich
    Correspondence
    Reprint requests: Marvin L. Meistrich, Ph.D., Department of Experimental Radiation Oncology, Unit 066, M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas 77030.
    Affiliations
    Department of Experimental Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas
    Search for articles by this author
Published:September 05, 2013DOI:https://doi.org/10.1016/j.fertnstert.2013.08.010
      Treatment of cancer with chemo- or radiotherapy causes reduction of sperm counts often to azoospermic levels that may persist for several years or be permanent. The time course of declines in sperm count can be predicted by the sensitivity of germ cells, with differentiating spermatogonia being most sensitive, and the known kinetics of recovery. Recovery from oligo- or azoospermia is more variable and depends on whether there is killing of stem cells and alteration of the somatic environment that normally supports differentiation of stem cells. Of the cytotoxic therapeutic agents, radiation and most alkylating drugs are the most potent at producing long-term azoospermia. Most of the newer biologic targeted therapies, except those used to target radioisotopes or toxins to cells, seem to have only modest effects, mostly on the endocrine aspects of the male reproductive system; however, their effects when used in combination with cytotoxic agents have not been well studied.

      Key Words

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Fertility and Sterility
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hermann B.P.
        • Sukhwani M.
        • Hansel M.C.
        • Orwig K.E.
        Spermatogonial stem cells in higher primates: are there differences from those in rodents?.
        Reproduction. 2010; 139: 479-493
        • Oakberg E.F.
        Sensitivity and time of degeneration of spermatogenic cells irradiated in various stages of maturation in the mouse.
        Radiat Res. 1955; 2: 369-391
        • Rowley M.J.
        • Leach D.R.
        • Warner G.A.
        • Heller C.G.
        Effect of graded doses of ionizing radiation on the human testis.
        Radiat Res. 1974; 59: 665-678
        • Meistrich M.L.
        • Finch M.
        • da Cunha M.F.
        • Hacker U.
        • Au W.W.
        Damaging effects of fourteen chemotherapeutic drugs on mouse testis cells.
        Cancer Res. 1982; 42: 122-131
        • Edwards R.G.
        • Sirlin J.L.
        The effect of 200 R of x-rays on the rate of spermatogenesis and spermiogenesis in the mouse.
        Exp Cell Res. 1958; 15: 522-528
        • Clifton D.K.
        • Bremner W.J.
        The effect of testicular X-irradiation on spermatogenesis in man. A comparison with the mouse.
        J Androl. 1983; 4: 387-392
        • Paulsen C.A.
        The study of hormonal aspects. Final progress report of AEC contract AT(45–1)-2225, task agreement 6. RLO-2225-2.
        U.S. Department of Energy, 1973
        • Meistrich M.L.
        • Wilson G.
        • Brown B.W.
        • da Cunha M.F.
        • Lipshultz L.I.
        Impact of cyclophosphamide on long-term reduction in sperm count in men treated with combination chemotherapy for Ewing’s and soft tissue sarcomas.
        Cancer. 1992; 70: 2703-2712
        • Meistrich M.L.
        • Wilson G.
        • Mathur K.
        • Fuller L.M.
        • Rodriguez M.A.
        • McLaughlin P.
        • et al.
        Rapid recovery of spermatogenesis after mitoxantrone, vincristine, vinblastine, and prednisone chemotherapy for Hodgkin's disease.
        J Clin Oncol. 1997; 15: 3488-3495
        • Choy J.T.
        • Brannigan R.E.
        The determination of reproductive safety in men during and after cancer treatment.
        Fertil Steril. 2013; 100 (doi: S0015-0282(13)02760-X): XX-XXX
        • Lu C.C.
        • Meistrich M.L.
        Cytotoxic effects of chemotherapeutic drugs on mouse testis cells.
        Cancer Res. 1979; 39: 3575-3582
        • Meistrich M.L.
        • Hunter N.
        • Suzuki N.
        • Trostle P.K.
        • Withers H.R.
        Gradual regeneration of mouse testicular stem cells after ionizing radiation.
        Radiat Res. 1978; 74: 349-362
        • Meistrich M.L.
        Quantitative correlation between testicular stem cell survival, sperm production, and fertility in the mouse after treatment with different cytotoxic agents.
        J Androl. 1982; 3: 58-68
        • Shuttlesworth G.A.
        • de Rooij D.G.
        • Huhtaniemi I.
        • Reissmann T.
        • Russell L.D.
        • Shetty G.
        • et al.
        Enhancement of spermatogonial proliferation and differentiation in irradiated rats by GnRH antagonist administration.
        Endocrinology. 2000; 141: 37-49
        • Shetty G.
        • Weng C.C.
        • Meachem S.J.
        • Bolden-Tiller O.U.
        • Zhang Z.
        • Pakarinen P.
        • et al.
        Both testosterone and FSH independently inhibit spermatogonial differentiation in irradiated rats.
        Endocrinology. 2006; 147: 472-482
        • Zhang Z.
        • Shao S.
        • Meistrich M.
        The radiation-induced block in spermatogonial differentiation is due to damage to the somatic environment, not the germ cells.
        J Cell Physiol. 2007; 211: 149-158
        • da Cunha M.F.
        • Meistrich M.L.
        • Haq M.M.
        • Gordon L.A.
        • Wyrobek A.
        Temporary effects of AMSA [4′(9-acridinylamino) methanesulfon-m-anisidide] chemotherapy on spermatogenesis.
        Cancer. 1982; 49: 2459-2462
        • Meistrich M.L.
        • van Beek M.E.A.B.
        Radiation sensitivity of the human testis.
        Adv Radiat Biol. 1990; 14: 227-268
        • Sanders J.E.
        • Hawley J.
        • Levy W.
        • Gooley T.
        • Buckner C.D.
        • Deeg H.J.
        • et al.
        Pregnancies following high-dose cyclophosphamide with or without high-dose busulfan or total-body irradiation and bone marrow transplantation.
        Blood. 1996; 87: 3045-3052
        • Jacob A.
        • Barker H.
        • Goodman A.
        • Holmes J.
        Recovery of spermatogenesis following bone marrow transplantation.
        Bone Marrow Transplant. 1998; 22: 277-279
        • Sandeman T.F.
        The effects of X irradiation on male human fertility.
        Br J Radiol. 1966; 39: 901-907
        • Silber S.J.
        • Nagy Z.
        • Devroey P.
        • Tournaye H.
        • Van Steirteghem A.C.
        Distribution of spermatogenesis in the testicles of azoospermic men: the presence or absence of spermatids in the testes of men with germinal failure.
        Hum Reprod. 1997; 12: 2422-2428
        • Jacobsen K.D.
        • Olsen D.R.
        • Fossa K.
        • Fossa S.
        External beam abdominal radiotherapy in patients with seminoma stage I: field type, testicular dose, and spermatogenesis.
        Int J Radiat Oncol Biol Phys. 1997; 38: 95-102
        • May C.A.
        • Tamaki K.
        • Neumann R.
        • Wilson G.
        • Zagars G.
        • Pollack A.
        • et al.
        Minisatellite mutation frequency in human sperm following radiotherapy.
        Mutat Res. 2000; 453: 67-75
        • Dubey P.
        • Wilson G.
        • Mathur K.K.
        • Hagemeister F.B.
        • Fuller L.M.
        • Ha C.S.
        • et al.
        Recovery of sperm production following radiation therapy for Hodgkin's disease after induction chemotherapy with mitoxantrone, vincristine, vinblastine and prednisone (NOVP).
        Int J Radiat Oncol Biol Phys. 2000; 46: 609-617
        • Marmor D.
        • Grob-Menendez F.
        • Duyck F.
        • Delafontaine D.
        Very late return of spermatogenesis after chlorambucil therapy: case reports.
        Fertil Steril. 1992; 58: 845-846
        • Preti A.
        • Hagemeister F.B.
        • McLaughlin P.
        • Swan F.
        • Redriguez A.
        • Pesa P.
        • et al.
        Hodgkin's disease with a mediastinal mass greater than 10 cm: results of four different treatment approaches.
        Ann Oncol. 1994; 5: S97-100
        • Pryzant R.M.
        • Meistrich M.L.
        • Wilson E.
        • Brown B.
        • McLaughlin P.
        Long-term reduction in sperm count after chemotherapy with and without radiation therapy for non-Hodgkin's lymphomas.
        J Clin Oncol. 1993; 11: 239-247
        • Hsiao W.
        • Stahl P.J.
        • Osterberg E.C.
        • Nejat E.
        • Palermo G.D.
        • Rosenwaks Z.
        • et al.
        Successful treatment of postchemotherapy azoospermia with microsurgical testicular sperm extraction: the Weill Cornell experience.
        J Clin Oncol. 2011; 29: 1607-1611
        • Hermann B.P.
        • Sukhwani M.
        • Lin C.C.
        • Sheng Y.
        • Tomko J.
        • Rodriguez M.
        • et al.
        Characterization, cryopreservation, and ablation of spermatogonial stem cells in adult rhesus macaques.
        Stem Cells. 2007; 25: 2330-2338
        • Meistrich M.L.
        • Vassilopoulou-Sellin R.
        • Lipshultz L.I.
        Gonadal dysfunction.
        in: DeVita V.T. Hellman S. Rosenberg S.A. Cancer: principles and practice of oncology. 7th ed. Lippincott Williams & Wilkins, Philadelphia2005: 2560-2574
        • Meistrich M.L.
        • Chawla S.P.
        • da Cunha M.F.
        • Johnson S.L.
        • Plager C.
        • Papadopoulos N.E.
        • et al.
        Recovery of sperm production after chemotherapy for osteosarcoma.
        Cancer. 1989; 63: 2115-2123
        • Apperley J.
        CML in pregnancy and childhood.
        Best Pract Res Clin Haematol. 2009; 22: 455-474
        • Schultheis B.
        • Nijmeijer B.A.
        • Yin H.
        • Gosden R.G.
        • Melo J.V.
        Imatinib mesylate at therapeutic doses has no impact on folliculogenesis or spermatogenesis in a leukaemic mouse model.
        Leuk Res. 2012; 36: 271-274
        • Basciani S.
        • De Luca G.
        • Dolci S.
        • Brama M.
        • Arizzi M.
        • Mariani S.
        • et al.
        Platelet-derived growth factor receptor beta-subtype regulates proliferation and migration of gonocytes.
        Endocrinology. 2008; 149: 6226-6235
        • Nurmio M.
        • Kallio J.
        • Toppari J.
        • Jahnukainen K.
        Adult reproductive functions after early postnatal inhibition by imatinib of the two receptor tyrosine kinases, c-kit and PDGFR, in the rat testis.
        Reprod Toxicol. 2008; 25: 442-446
        • Ault P.
        • Kantarjian H.
        • O'Brien S.
        • Faderl S.
        • Beran M.
        • Rios M.B.
        • et al.
        Pregnancy among patients with chronic myeloid leukemia treated with imatinib.
        J Clin Oncol. 2006; 24: 1204-1208
        • Shash E.
        • Bassi S.
        • Cocorocchio E.
        • Colpi G.M.
        • Cinieri S.
        • Peccatori F.A.
        Fatherhood during imatinib.
        Acta Oncol. 2011; 50: 734-735
        • Seshadri T.
        • Seymour J.F.
        • McArthur G.A.
        Oligospermia in a patient receiving imatinib therapy for the hypereosinophilic syndrome.
        N Engl J Med. 2004; 351: 2134-2135
        • Breccia M.
        • Cannella L.
        • Montefusco E.
        • Frustaci A.
        • Pacilli M.
        • Alimena G.
        Male patients with chronic myeloid leukemia treated with imatinib involved in healthy pregnancies: report of five cases.
        Leuk Res. 2008; 32: 519-520
        • Gambacorti-Passerini C.
        • Tornaghi L.
        • Cavagnini F.
        • Rossi P.
        • Pecori-Giraldi F.
        • Mariani L.
        • et al.
        Gynaecomastia in men with chronic myeloid leukaemia after imatinib.
        Lancet. 2003; 361: 1954-1956
        • Mariani S.
        • Giona F.
        • Basciani S.
        • Brama M.
        • Gnessi L.
        Low bone density and decreased inhibin-B/FSH ratio in a boy treated with imatinib during puberty.
        Lancet. 2008; 372: 111-112
        • Mariani S.
        • Basciani S.
        • Fabbri A.
        • Agati L.
        • Ulisse S.
        • Lubrano C.
        • et al.
        Severe oligozoospermia in a young man with chronic myeloid leukemia on long-term treatment with imatinib started before puberty.
        Fertil Steril. 2011; 95 (e15–7): 1120
        • Huyghe E.
        • Zairi A.
        • Nohra J.
        • Kamar N.
        • Plante P.
        • Rostaing L.
        Gonadal impact of target of rapamycin inhibitors (sirolimus and everolimus) in male patients: an overview.
        Transpl Int. 2007; 20: 305-311
        • Bererhi L.
        • Flamant M.
        • Martinez F.
        • Karras A.
        • Thervet E.
        • Legendre C.
        Rapamycin-induced oligospermia.
        Transplantation. 2003; 76: 885-886
        • Wise L.D.
        • Spence S.
        • Saldutti L.P.
        • Kerr J.S.
        Assessment of female and male fertility in Sprague-Dawley rats administered vorinostat, a histone deacetylase inhibitor.
        Birth Defects Res B Dev Reprod Toxicol. 2008; 83: 19-26
        • Fenic I.
        • Hossain H.M.
        • Sonnack V.
        • Tchatalbachev S.
        • Thierer F.
        • Trapp J.
        • et al.
        In vivo application of histone deacetylase inhibitor trichostatin-a impairs murine male meiosis.
        J Androl. 2008; 29: 172-185
        • Focarelli R.
        • Francavilla S.
        • Francavilla F.
        • della Giovampaola C.
        • Santucci A.
        • Rosati F.
        A sialoglycoprotein, gp20, of the human capacitated sperm surface is a homologue of the leukocyte CD52 antigen: analysis of the effect of anti-CD52 monoclonal antibody (Campath-1) on capacitated spermatozoa.
        Mol Hum Reprod. 1999; 5: 46-51
        • Schilsky R.L.
        • Davidson H.S.
        • Magid D.
        • Daiter S.
        • Golomb H.M.
        Gonadal and sexual function in male patients with hairy cell leukemia: lack of adverse effects of recombinant a2-interferon treatment.
        Cancer Treat Rep. 1987; 71: 179-181
        • Corssmit E.P.
        • Endert E.
        • Sauerwein H.P.
        • Romijn J.A.
        Acute effects of interferon-alpha administration on testosterone concentrations in healthy men.
        Eur J Endocrinol. 2000; 143: 371-374
        • Longo I.
        • Sanchez-Mateos P.
        • Lazaro P.
        • Longo N.
        Azoospermia in a patient receiving interferon alpha for a stage III melanoma.
        Acta Derm Venereol. 2002; 82: 389-390
        • Hattori N.
        • Gopal A.K.
        • Shields A.T.
        • Fisher D.R.
        • Gooley T.
        • Pagel J.M.
        • et al.
        131I-tositumomab myeloablative radioimmunotherapy for non-Hodgkin’s lymphoma: radiation dose to the testes.
        Nucl Med Comm. 2012; 33: 1225-1231
        • Petersen P.M.
        • Giwercman A.
        • Daugaard G.
        • Rorth M.
        • Petersen J.H.
        • Skakkeaek N.E.
        • et al.
        Effect of graded testicular doses of radiotherapy in patients treated for carcinoma-in-situ in the testis.
        J Clin Oncol. 2002; 20: 1537-1543
        • Cremonesi M.
        • Ferrari M.
        • Grana C.M.
        • Vanazzi A.
        • Stabin M.
        • Bartolomei M.
        • et al.
        High-dose radioimmunotherapy with 90Y-ibritumomab tiuxetan: comparative dosimetric study for tailored treatment.
        J Nucl Med. 2007; 48: 1871-1879
        • Chiesa C.
        • Botta F.
        • Coliva A.
        • Maccauro M.
        • Devizzi L.
        • Guidetti A.
        • et al.
        Absorbed dose and biologically effective dose in patients with high-risk non-Hodgkin's lymphoma treated with high-activity myeloablative 90Y-ibritumomab tiuxetan (Zevalin).
        Eur J Nucl Med Mol Imaging. 2009; 36: 1745-1757