Advertisement

Raman spectroscopy as an ex vivo noninvasive approach to distinguish complete and incomplete spermatogenesis within human seminiferous tubules

      Objective

      To evaluate the potential clinical application of Raman spectroscopy (RS) as a tool that may identify spermatogenesis within human seminiferous tubules.

      Design

      RS scanning of human testicular tissue at different maturational stages; immunohistochemistry study and metabolomic analysis of nonobstructive azoospermic/obstructive azoospermic testes.

      Setting

      State-owned hospital.

      Patient(s)

      Fifty-two patients with clinical indications of nonobstructive azoospermia (NOA) and obstructive azoospermia (OA) who underwent infertility evaluation and treatment.

      Intervention(s)

      None.

      Main Outcome Measurement(s)

      Raman spectra of seminiferous tubules, thickness of lamina propria (LP), immunohistochemistry of type I, III, and IV collagens and laminin, metabolites of human testes.

      Result(s)

      Tubules of OA patients had spectral intensities below 2,000 (au), while tubules of NOA patients had higher intensities, depending on the degree of spermatogenesis. RS was able to separate samples of NOA and OA testicular tissue with a sensitivity of 90% and specificity of 85.71%. The LP of NOA tubules were thickened and had increased deposition of type I and type III collagens. Gas chromatography-mass spectrometer (GC-MS) detected 12 metabolites that showed significant differences between NOA and OA testes.

      Conclusion(s)

      RS can noninvasively distinguish seminiferous tubules with complete and incomplete spermatogenesis and may serve as a novel and potentially useful tool to guide surgeons performing micro-testicular sperm extraction to improve sperm retrieval.

      Key Words

      To read this article in full you will need to make a payment

      References

        • Jarow J.P.
        • Espeland M.A.
        • Lipshultz L.I.
        Evaluation of the azoospermic patient.
        J Urol. 1989; 142: 62-65
        • Devroey P.
        • Liu J.
        • Nagy Z.
        • Tournaye H.
        • Silber S.J.
        • Van Steirteghem A.C.
        Normal fertilization of human oocytes after testicular sperm extraction and intracytoplasmic sperm injection.
        Fertil Steril. 1994; 62: 639-641
        • Okada H.
        • Dobashi M.
        • Yamazaki T.
        • Hara I.
        • Fujisawa M.
        • Arakawa S.
        • et al.
        Conventional versus microdissection testicular sperm extraction for nonobstructive azoospermia.
        J Urol. 2002; 168: 1063-1067
        • Schlegel P.N.
        • Su L.M.
        Physiological consequences of testicular sperm extraction.
        Hum Reprod. 1997; 12: 1688-1692
        • Andersson A.M.
        • Jorgensen N.
        • Frydelund-Larsen L.
        • Rajpert-De Meyts E.
        • Skakkebaek N.E.
        Impaired Leydig cell function in infertile men: a study of 357 idiopathic infertile men and 318 proven fertile controls.
        J Clin Endocrinol Metab. 2004; 89: 3161-3167
        • Ramasamy R.
        • Sterling J.
        • Fisher E.S.
        • Li P.S.
        • Jain M.
        • Robinson B.D.
        • et al.
        Identification of spermatogenesis with multiphoton microscopy: an evaluation in a rodent model.
        J Urol. 2011; 186: 2487-2492
        • Najari B.B.
        • Ramasamy R.
        • Sterling J.
        • Aggarwal A.
        • Sheth S.
        • Li P.S.
        • et al.
        Pilot study of the correlation of multiphoton tomography of ex vivo human testis with histology.
        J Urol. 2012; 188: 538-543
        • Puppels G.J.
        • de Mul F.F.
        • Otto C.
        • Greve J.
        • Robert-Nicoud M.
        • Arndt-Jovin D.J.
        • et al.
        Studying single living cells and chromosomes by confocal Raman microspectroscopy.
        Nature. 1990; 347: 301-303
        • de Jong B.W.
        • Schut T.C.
        • Maquelin K.
        • van der Kwast T.
        • Bangma C.H.
        • Kok D.J.
        • et al.
        Discrimination between nontumor bladder tissue and tumor by Raman spectroscopy.
        Anal Chem. 2006; 78: 7761-7769
        • Sahu A.
        • Sawant S.
        • Mamgain H.
        • Krishna C.M.
        Raman spectroscopy of serum: an exploratory study for detection of oral cancers.
        Analyst. 2013; 138: 4161-4174
        • Brauchle E.
        • Schenke-Layland K.
        Raman spectroscopy in biomedicine—non-invasive in vitro analysis of cells and extracellular matrix components in tissues.
        Biotech J. 2013; 8: 288-297
        • Meister K.
        • Schmidt D.A.
        • Brundermann E.
        • Havenith M.
        Confocal Raman microspectroscopy as an analytical tool to assess the mitochondrial status in human spermatozoa.
        Analyst. 2010; 135: 1370-1374
        • Mallidis C.
        • Wistuba J.
        • Bleisteiner B.
        • Damm O.S.
        • Gross P.
        • Wubbeling F.
        • et al.
        In situ visualization of damaged DNA in human sperm by Raman microspectroscopy.
        Hum Reprod. 2011; 26: 1641-1649
        • Liu F.
        • Yong Z.
        • Liu Y.
        • Wang X.
        • Ping P.
        • Zhu X.
        • et al.
        Real-time Raman microspectroscopy scanning of the single live sperm bound to human zona pellucida.
        Fertil Steril. 2013; 99: 684-689
        • Pop O.T.
        • Cotoi C.G.
        • Plesea I.E.
        • Gherghiceanu M.
        • Enache S.D.
        • Mandache E.
        • et al.
        Histological and ultrastructural analysis of the seminiferous tubule wall in ageing testis.
        Rom J Morphol Embryol. 2011; 52: 241-248
        • Dobashi M.
        • Fujisawa M.
        • Naito I.
        • Yamazaki T.
        • Okada H.
        • Kamidono S.
        Distribution of type IV collagen subtypes in human testes and their association with spermatogenesis.
        Fertil Steril. 2003; 80: 755-760
        • Sato Y.
        • Nozawa S.
        • Iwamoto T.
        Study of spermatogenesis and thickening of lamina propria in the human seminiferous tubules.
        Fertil Steril. 2008; 90: 1310-1312
        • Albrecht M.
        Insights into the nature of human testicular peritubular cells.
        Ann Anat. 2009; 191: 532-540
        • Volkmann J.
        • Muller D.
        • Feuerstacke C.
        • Kliesch S.
        • Bergmann M.
        • Muhlfeld C.
        • et al.
        Disturbed spermatogenesis associated with thickened lamina propria of seminiferous tubules is not caused by dedifferentiation of myofibroblasts.
        Hum Reprod. 2011; 26: 1450-1461
        • Peticolas W.L.
        Raman spectroscopy of DNA and proteins.
        Methods Enzymol. 1995; 246: 389-416
        • Maquelin K.
        • Kirschner C.
        • Choo-Smith L.P.
        • van den Braak N.
        • Endtz H.P.
        • Naumann D.
        • et al.
        Identification of medically relevant microorganisms by vibrational spectroscopy.
        J Microbiol Methods. 2002; 51: 255-271
        • Kunapareddy N.
        • Freyer J.P.
        • Mourant J.R.
        Raman spectroscopic characterization of necrotic cell death.
        J Biomed Opt. 2008; 13: 054002
        • Mohs A.M.
        • Mancini M.C.
        • Singhal S.
        • Provenzale J.M.
        • Leyland-Jones B.
        • Wang M.D.
        • et al.
        Hand-held spectroscopic device for in vivo and intraoperative tumor detection: contrast enhancement, detection sensitivity, and tissue penetration.
        Anal Chem. 2010; 82: 9058-9065