Advertisement

Panel of five microRNAs as potential biomarkers for the diagnosis and assessment of male infertility

      Objective

      To validate a set of five microRNAs (miRNAs) as specific biomarkers for the assessment of male infertility.

      Design

      Quantitative real-time polymerase chain reaction (qRT-PCR) validation study.

      Setting

      University research and clinical institutes.

      Patient(s)

      Two hundred twenty-six men presenting at an infertility clinic.

      Intervention(s)

      None.

      Main Outcome Measure(s)

      Validation analysis of a set of miRNAs in human purified spermatozoa and testicular biopsies.

      Result(s)

      Five miRNAs (hsa-miR-34b*, hsa-miR-34b, hsa-miR-34c-5p, hsa-miR-429, and hsa-miR-122) were confirmed with the use of qRT-PCR analysis in validation sets in patients with different forms of spermatogenic impairments (subfertile and nonobstructive azoospermia [NOA]) and control subjects. We found that hsa-miR-429 was significantly increased and the four other miRNAs were decreased in both tested groups compared with normal control subjects. Computing the area under the receiver operating characteristic curve (AUC) value for each of the five miRNAs, we showed that they separated the tested groups with high accuracy (range 0.777–0.988), except for hsa-miR-429 (AUC 0.475), in patient samples with NOA. Furthermore, with the use of support vector machine classification combining these five miRNAs, we found that they discriminated individuals with, respectively, subfertility and NOA from control subjects with an accuracy of 98.65% and 99.91%, a specificity of 98.44% and 99.69%, and a sensitivity of 98.83% and 100%.

      Conclusion(s)

      Our finding suggests that these five miRNAs have potential as novel noninvasive biomarkers to diagnose patients with subfertility. Except for hsa-miR-429, the combination of these miRNAs with other conventional tests would improve the diagnostic accuracy for detecting patients with different forms of NOA.

      Key Words

      To read this article in full you will need to make a payment

      References

        • Thonneau P.
        • Marchand S.
        • Tallec A.
        • Ferial M.L.
        • Ducot B.
        • Lansac J.
        • et al.
        Incidence and main causes of infertility in a resident population (1,850,000) of three French regions (1988–1989).
        Hum Reprod. 1991; 6: 811-816
        • Agarwal A.
        • Allamaneni S.S.
        Sperm DNA damage assessment: a test whose time has come.
        Fertil Steril. 2005; 84: 850-853
        • Natali A.
        • Turek P.J.
        An assessment of new sperm tests for male infertility.
        Urology. 2011; 77: 1027-1034
        • Abu-Halima M.
        • Backes C.
        • Leidinger P.
        • Keller A.
        • Lubbad A.M.
        • Hammadeh M.
        • et al.
        MicroRNA expression profiles in human testicular tissues of infertile men with different histopathologic patterns.
        Fertil Steril. 2014; 101: 78-86.e2
        • Malcher A.
        • Rozwadowska N.
        • Stokowy T.
        • Kolanowski T.
        • Jedrzejczak P.
        • Zietkowiak W.
        • et al.
        Potential biomarkers of nonobstructive azoospermia identified in microarray gene expression analysis.
        Fertil Steril. 2013; 100: 1686-1694.e7
        • Schrader M.
        • Muller M.
        • Heicappell R.
        • Straub B.
        • Miller K.
        Quantification of human telomerase RNA (hTR) and human telomerase reverse transcriptase (hTERT) mRNA in testicular tissue of infertile patients.
        Asian J Androl. 2001; 3: 263-270
        • Silber S.J.
        • Nagy Z.
        • Devroey P.
        • Tournaye H.
        • Van Steirteghem A.C.
        Distribution of spermatogenesis in the testicles of azoospermic men: the presence or absence of spermatids in the testes of men with germinal failure.
        Hum Reprod. 1997; 12: 2422-2428
        • Vogt P.H.
        Genomic heterogeneity and instability of the AZF locus on the human Y chromosome.
        Mol Cell Endocrinol. 2004; 224: 1-9
        • Vogt P.H.
        Molecular genetics of human male infertility: from genes to new therapeutic perspectives.
        Curr Pharm Des. 2004; 10: 471-500
        • Abu-Halima M.
        • Hammadeh M.
        • Schmitt J.
        • Leidinger P.
        • Keller A.
        • Meese E.
        • et al.
        Altered microRNA expression profiles of human spermatozoa in patients with different spermatogenic impairments.
        Fertil Steril. 2013; 99: 1249-1255.e16
        • Feig C.
        • Kirchhoff C.
        • Ivell R.
        • Naether O.
        • Schulze W.
        • Spiess A.N.
        A new paradigm for profiling testicular gene expression during normal and disturbed human spermatogenesis.
        Mol Hum Reprod. 2007; 13: 33-43
        • Lin Y.H.
        • Lin Y.M.
        • Teng Y.N.
        • Hsieh T.Y.
        • Lin Y.S.
        • Kuo P.L.
        Identification of ten novel genes involved in human spermatogenesis by microarray analysis of testicular tissue.
        Fertil Steril. 2006; 86: 1650-1658
        • Wu W.
        • Qin Y.
        • Li Z.
        • Dong J.
        • Dai J.
        • Lu C.
        • et al.
        Genome-wide microRNA expression profiling in idiopathic nonobstructive azoospermia: significant up-regulation of miR-141, miR-429 and miR-7-1-3p.
        Hum Reprod. 2013; 28: 1827-1836
        • Ambros V.
        The functions of animal microRNAs.
        Nature. 2004; 431: 350-355
        • Bartel D.P.
        MicroRNAs: target recognition and regulatory functions.
        Cell. 2009; 136: 215-233
        • Plasterk R.H.
        Micro RNAs in animal development.
        Cell. 2006; 124: 877-881
        • Zhang S.
        • Chen L.
        • Jung E.J.
        • Calin G.A.
        Targeting microRNAs with small molecules: from dream to reality.
        Clin Pharmacol Ther. 2010; 87: 754-758
        • Krawetz S.A.
        • Kruger A.
        • Lalancette C.
        • Tagett R.
        • Anton E.
        • Draghici S.
        • et al.
        A survey of small RNAs in human sperm.
        Hum Reprod. 2011; 26: 3401-3412
        • Lian J.
        • Zhang X.
        • Tian H.
        • Liang N.
        • Wang Y.
        • Liang C.
        • et al.
        Altered microRNA expression in patients with nonobstructive azoospermia.
        Reprod Biol Endocrinol. 2009; 7: 13
        • Wang C.
        • Yang C.
        • Chen X.
        • Yao B.
        • Yang C.
        • Zhu C.
        • et al.
        Altered profile of seminal plasma microRNAs in the molecular diagnosis of male infertility.
        Clin Chem. 2011; 57: 1722-1731
        • Wu W.
        • Hu Z.
        • Qin Y.
        • Dong J.
        • Dai J.
        • Lu C.
        • et al.
        Seminal plasma microRNAs: potential biomarkers for spermatogenesis status.
        Mol Hum Reprod. 2012; 18: 489-497
        • World Health Organization
        WHO laboratory manual for the examination and processing of human semen.
        5th ed. WHO, Geneva2010
        • Livak K.J.
        • Schmittgen T.D.
        Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method.
        Methods. 2001; 25: 402-408
        • R Development Core Team
        R: a language and environment for statistical computing.
        (Vienna: R Foundation for Statistical Computing)2010 (Available at: http://www.r-project.org/. Last accessed July 29, 2014)
        • McIver S.C.
        • Roman S.D.
        • Nixon B.
        • McLaughlin E.A.
        miRNA and mammalian male germ cells.
        Hum Reprod Update. 2012; 18: 44-59
        • Papaioannou M.D.
        • Nef S.
        microRNAs in the testis: building up male fertility.
        J Androl. 2010; 31: 26-33
        • Bao J.
        • Li D.
        • Wang L.
        • Wu J.
        • Hu Y.
        • Wang Z.
        • et al.
        MicroRNA-449 and microRNA-34b/c function redundantly in murine testes by targeting E2F transcription factor–retinoblastoma protein (E2F-pRb) pathway.
        J Biol Chem. 2012; 287: 21686-21698
        • Bouhallier F.
        • Allioli N.
        • Lavial F.
        • Chalmel F.
        • Perrard M.H.
        • Durand P.
        • et al.
        Role of miR-34c microRNA in the late steps of spermatogenesis.
        RNA. 2010; 16: 720-731
        • Liang X.
        • Zhou D.
        • Wei C.
        • Luo H.
        • Liu J.
        • Fu R.
        • et al.
        MicroRNA-34c enhances murine male germ cell apoptosis through targeting ATF1.
        PLoS One. 2012; 7: e33861
        • Ro S.
        • Park C.
        • Sanders K.M.
        • McCarrey J.R.
        • Yan W.
        Cloning and expression profiling of testis-expressed microRNAs.
        Dev Biol. 2007; 311: 592-602
        • Yu Z.
        • Raabe T.
        • Hecht N.B.
        MicroRNA Mirn122a reduces expression of the posttranscriptionally regulated germ cell transition protein 2 (Tnp2) messenger RNA (mRNA) by mRNA cleavage.
        Biol Reprod. 2005; 73: 427-433
        • Corney D.C.
        • Flesken-Nikitin A.
        • Godwin A.K.
        • Wang W.
        • Nikitin A.Y.
        MicroRNA-34b and microRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth.
        Cancer Res. 2007; 67: 8433-8438
        • He X.
        • He L.
        • Hannon G.J.
        The guardian’s little helper: microRNAs in the p53 tumor suppressor network.
        Cancer Res. 2007; 67: 11099-11101
        • Cannell I.G.
        • Bushell M.
        Regulation of Myc by miR-34c: a mechanism to prevent genomic instability?.
        Cell Cycle. 2010; 9: 2726-2730
        • Hagman Z.
        • Larne O.
        • Edsjo A.
        • Bjartell A.
        • Ehrnstrom R.A.
        • Ulmert D.
        • et al.
        miR-34c is downregulated in prostate cancer and exerts tumor suppressive functions.
        Int J Cancer. 2010; 127: 2768-2776
        • Rokhlin O.W.
        • Scheinker V.S.
        • Taghiyev A.F.
        • Bumcrot D.
        • Glover R.A.
        • Cohen M.B.
        MicroRNA-34 mediates AR-dependent p53-induced apoptosis in prostate cancer.
        Cancer Biol Ther. 2008; 7: 1288-1296
        • Yan N.
        • Lu Y.
        • Sun H.
        • Tao D.
        • Zhang S.
        • Liu W.
        • et al.
        A microarray for microRNA profiling in mouse testis tissues.
        Reproduction. 2007; 134: 73-79
        • Barad O.
        • Meiri E.
        • Avniel A.
        • Aharonov R.
        • Barzilai A.
        • Bentwich I.
        • et al.
        MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues.
        Genome Res. 2004; 14: 2486-2494
        • Yan N.
        • Lu Y.
        • Sun H.
        • Qiu W.
        • Tao D.
        • Liu Y.
        • et al.
        Microarray profiling of microRNAs expressed in testis tissues of developing primates.
        J Assist Reprod Genet. 2009; 26: 179-186
        • Hayashi K.
        • Chuva de Sousa Lopes S.M.
        • Kaneda M.
        • Tang F.
        • Hajkova P.
        • Lao K.
        • et al.
        MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis.
        PloS One. 2008; 3: e1738
        • Maatouk D.M.
        • Loveland K.L.
        • McManus M.T.
        • Moore K.
        • Harfe B.D.
        Dicer1 is required for differentiation of the mouse male germline.
        Biol Reprod. 2008; 79: 696-703
        • Lopes S.
        • Sun J.G.
        • Jurisicova A.
        • Meriano J.
        • Casper R.F.
        Sperm deoxyribonucleic acid fragmentation is increased in poor-quality semen samples and correlates with failed fertilization in intracytoplasmic sperm injection.
        Fertil Steril. 1998; 69: 528-532
        • Aitken R.J.
        • De Iuliis G.N.
        Origins and consequences of DNA damage in male germ cells.
        Reprod Biomed Online. 2007; 14: 727-733
        • Hammadeh M.E.
        • Hamad M.F.
        • Montenarh M.
        • Fischer-Hammadeh C.
        Protamine contents and P1/P2 ratio in human spermatozoa from smokers and nonsmokers.
        Hum Reprod. 2010; 25: 2708-2720
        • Henkel R.
        DNA fragmentation and its influence on fertilization and pregnancy outcome.
        in: Oehninger S.C. Kruger T.F. Male infertility. Diagnosis and treatment. Informa Healthcare, London2007: 277-290
        • Piasecka M.
        • Gaczarzewicz D.
        • Laszczynska M.
        Evaluation of sperm genomic integrity of normozoospermic men: a prospective study.
        Folia Histochem Cytobiol. 2006; 44: 117-122
        • Ribas-Maynou J.
        • Garcia-Peiro A.
        • Fernandez-Encinas A.
        • Abad C.
        • Amengual M.J.
        • Prada E.
        • et al.
        Comprehensive analysis of sperm DNA fragmentation by five different assays: TUNEL assay, SCSA, SCD test and alkaline and neutral comet assay.
        Andrology. 2013; 1: 715-722
        • Sergerie M.
        • Laforest G.
        • Bujan L.
        • Bissonnette F.
        • Bleau G.
        Sperm DNA fragmentation: threshold value in male fertility.
        Hum Reprod. 2005; 20: 3446-3451
        • Sharma R.K.
        • Sabanegh E.
        • Mahfouz R.
        • Gupta S.
        • Thiyagarajan A.
        • Agarwal A.
        TUNEL as a test for sperm DNA damage in the evaluation of male infertility.
        Urology. 2010; 76: 1380-1386
        • Shen H.M.
        • Dai J.
        • Chia S.E.
        • Lim A.
        • Ong C.N.
        Detection of apoptotic alterations in sperm in subfertile patients and their correlations with sperm quality.
        Hum Reprod. 2002; 17: 1266-1273
        • Weng S.L.
        • Taylor S.L.
        • Morshedi M.
        • Schuffner A.
        • Duran E.H.
        • Beebe S.
        • et al.
        Caspase activity and apoptotic markers in ejaculated human sperm.
        Mol Hum Reprod. 2002; 8: 984-991
        • Saleh R.A.
        • Agarwal A.
        • Kandirali E.
        • Sharma R.K.
        • Thomas A.J.
        • Nada E.A.
        • et al.
        Leukocytospermia is associated with increased reactive oxygen species production by human spermatozoa.
        Fertil Steril. 2002; 78: 1215-1224
        • Singh N.P.
        • Muller C.H.
        • Berger R.E.
        Effects of age on DNA double-strand breaks and apoptosis in human sperm.
        Fertil Steril. 2003; 80: 1420-1430
        • Ahmad L.
        • Jalali S.
        • Shami S.A.
        • Akram Z.
        Sperm preparation: DNA damage by comet assay in normo- and teratozoospermics.
        Arch Androl. 2007; 53: 325-338
        • Bungum M.
        • Spano M.
        • Humaidan P.
        • Eleuteri P.
        • Rescia M.
        • Giwercman A.
        Sperm chromatin structure assay parameters measured after density gradient centrifugation are not predictive for the outcome of ART.
        Hum Reprod. 2008; 23: 4-10
        • Gosalvez J.
        • Cortes-Gutierrez E.I.
        • Nunez R.
        • Fernandez J.L.
        • Caballero P.
        • Lopez-Fernandez C.
        • et al.
        A dynamic assessment of sperm DNA fragmentation versus sperm viability in proven fertile human donors.
        Fertil Steril. 2009; 92: 1915-1919
        • Ricci G.
        • Perticarari S.
        • Boscolo R.
        • Montico M.
        • Guaschino S.
        • Presani G.
        Semen preparation methods and sperm apoptosis: swim-up versus gradient-density centrifugation technique.
        Fertil Steril. 2009; 91: 632-638
        • Sakkas D.
        • Alvarez J.G.
        Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis.
        Fertil Steril. 2010; 93: 1027-1036
        • Spano M.
        • Toft G.
        • Hagmar L.
        • Eleuteri P.
        • Rescia M.
        • Rignell-Hydbom A.
        • et al.
        Exposure to PCB and p,p′-DDE in European and Inuit populations: impact on human sperm chromatin integrity.
        Hum Reprod. 2005; 20: 3488-3499
        • Zini A.
        • Finelli A.
        • Phang D.
        • Jarvi K.
        Influence of semen processing technique on human sperm DNA integrity.
        Urology. 2000; 56: 1081-1084
        • Zini A.
        • Nam R.K.
        • Mak V.
        • Phang D.
        • Jarvi K.
        Influence of initial semen quality on the integrity of human sperm DNA following semen processing.
        Fertil Steril. 2000; 74: 824-827
        • Blanco-Rodriguez J.
        DNA replication and germ cell apoptosis during spermatogenesis in the cat.
        J Androl. 2002; 23: 484-490
        • Blanco-Rodriguez J.
        • Martinez-Garcia C.
        Apoptosis pattern elicited by several apoptogenic agents on the seminiferous epithelium of the adult rat testis.
        J Androl. 1998; 19: 487-497
        • Ricote M.
        • Alfaro J.M.
        • Garcia-Tunon I.
        • Arenas M.I.
        • Fraile B.
        • Paniagua R.
        • et al.
        Control of the annual testicular cycle of the marbled-newt by p53, p21, and Rb gene products.
        Mol Reprod Dev. 2002; 63: 202-209