Advertisement

Cryopreservation of testicular tissue before long-term testicular cell culture does not alter in vitro cell dynamics

      Objective

      To assess whether testicular cell dynamics are altered during long-term culture after testicular tissue cryopreservation.

      Design

      Experimental basic science study.

      Setting

      Reproductive biology laboratory.

      Patient(s)

      Testicular tissue with normal spermatogenesis was obtained from six donors.

      Intervention(s)

      None.

      Main Outcome Measure(s)

      Detection and comparison of testicular cells from fresh and frozen tissues during long-term culture.

      Result(s)

      Human testicular cells derived from fresh (n = 3) and cryopreserved (n = 3) tissues were cultured for 2 months and analyzed with quantitative reverse-transcription polymerase chain reaction and immunofluorescence. Spermatogonia including spermatogonial stem cells (SSCs) were reliably detected by combining VASA, a germ cell marker, with UCHL1, a marker expressed by spermatogonia. The established markers STAR, ACTA2, and SOX9 were used to analyze the presence of Leydig cells, peritubular myoid cells, and Sertoli cells, respectively. No obvious differences were found between the cultures initiated from fresh or cryopreserved tissues. Single or small groups of SSCs (VASA+/UCHL1+) were detected in considerable amounts up to 1 month of culture, but infrequently after 2 months. SSCs were found attached to the feeder monolayer, which expressed markers for Sertoli cells, Leydig cells, and peritubular myoid cells. In addition, VASA/UCHL1+ cells, most likely originating from the interstitium, also contributed to this monolayer. Apart from Sertoli cells, all somatic cell types could be detected throughout the culture period.

      Conclusion(s)

      Testicular tissue can be cryopreserved before long-term culture without modifying its outcome, which encourages implementation of testicular tissue banking for fertility preservation. However, because of the limited numbers of SSCs available after 2 months, further exploration and optimization of the culture system is needed.

      Key Words

      To read this article in full you will need to make a payment

      References

        • Goossens E.
        • Van Saen D.
        • Tournaye H.
        Spermatogonial stem cell preservation and transplantation: from research to clinic.
        Hum Reprod. 2013; 28: 897-907
        • Jahnukainen K.
        • Stukenborg J.-B.
        Present and future prospects of male fertility preservation for children and adolescents.
        J Clin Endocrinol Metab. 2012; 97: 4341-4351
        • Jahnukainen K.
        • Mitchell R.T.
        • Stukenborg J.-B.
        Testicular function and fertility preservation after treatment for haematological cancer.
        Curr Opin Endocrinol Diabetes Obes. 2015; 22: 217-223
        • Ishii K.
        • Kanatsu-shinohara M.
        • Shinohara T.
        Cell-cycle-dependent colonization of mouse spermatogonial stem cells.
        J Reprod Dev. 2014; 60: 37-46
        • Sadri-Ardekani H.
        • Mizrak S.C.
        • Van Daalen S.K.
        • Korver C.M.
        • Roepers-Gajadien H.L.
        • Koruji M.
        • et al.
        Propagation of human spermatogonial stem cells in vitro.
        JAMA. 2009; 302: 2416-2418
        • Sadri-Ardekani H.
        • Akhondi M.A.
        • van der Veen F.
        • Repping S.
        • van Pelt A.M.
        In vitro propagation of human prepubertal spermatogonial stem cells.
        JAMA. 2011; 305: 2416-2418
        • Nickkholgh B.
        • Mizrak S.C.
        • Korver C.M.
        • van Daalen S.K.
        • Meissner A.
        • Repping S.
        • et al.
        Enrichment of spermatogonial stem cells from long-term cultured human testicular cells.
        Fertil Steril. 2014; 102: 558-565.e5
        • Bakhach J.
        The cryopreservation of composite tissues: principles and recent advancement on cryopreservation of different type of tissues.
        Organogenesis. 2009; 5: 119-126
        • Landreh L.
        • Spinnler K.
        • Schubert K.
        • Häkkinen M.R.
        • Auriola S.
        • Poutanen M.
        • et al.
        Human testicular peritubular cells host putative stem Leydig cells with steroidogenic capacity.
        J Clin Endocrinol Metab. 2014; 99: E1227-E1235
        • Albrecht M.
        • Rämsch R.
        • Köhn F.M.
        • Schwarzer J.U.
        • Mayerhofer A.
        Isolation and cultivation of human testicular peritubular cells: a new model for the investigation of fibrotic processes in the human testis and male infertility.
        J Clin Endocrinol Metab. 2006; 91: 1956-1960
        • Chui K.
        • Trivedi A.
        • Cheng C.Y.
        • Cherbavaz D.B.
        • Dazin P.F.
        • Huynh A.L.
        • et al.
        Characterization and functionality of proliferative human Sertoli cells.
        Cell Transpl. 2011; 20: 619-635
        • Kojima Y.
        • Hayashi Y.
        • Mizuno K.
        • Sasaki S.
        • Fukui Y.
        • Koopman P.
        • et al.
        Up-regulation of SOX9 in human sex-determining region on the Y chromosome (SRY)-negative XX males.
        Clin Endocrinol (Oxf). 2008; 68: 791-799
        • Eildermann K.
        • Gromoll J.
        • Behr R.
        Misleading and reliable markers to differentiate between primate testis-derived multipotent stromal cells and spermatogonia in culture.
        Hum Reprod. 2012; 27: 1754-1767
        • Zheng Y.
        • Thomas A.
        • Schmidt C.M.
        • Dann C.T.
        Quantitative detection of human spermatogonia for optimization of spermatogonial stem cell culture.
        Hum Reprod. 2014; 29: 2497-2511
        • Kossack N.
        • Terwort N.
        • Wistuba J.
        • Ehmcke J.
        • Schlatt S.
        • Schöler H.
        • et al.
        A combined approach facilitates the reliable detection of human spermatogonia in vitro.
        Hum Reprod. 2013; 28: 3012-3025
        • Smith J.
        • Yango P.
        • Altman E.
        • Choudhry S.
        • Poelzl A.
        • Zamah A.
        • et al.
        Testicular niche required for human spermatogonial stem cell expansion.
        Stem Cells Transl Med. 2014; 3: 1043-1054
        • Sadri-Ardekani H.
        • Homburg C.H.
        • van Capel T.M.
        • van den Berg H.
        • van der Veen F.
        • van der Schoot C.E.
        • et al.
        Eliminating acute lymphoblastic leukemia cells from human testicular cell cultures: a pilot study.
        Fertil Steril. 2014; 101: 1072-1078
        • Livak K.J.
        • Schmittgen T.D.
        Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method.
        Methods. 2001; 25: 402-408
        • Schmittgen T.D.
        • Livak K.J.
        Analyzing real-time PCR data by the comparative CT method.
        Nat Protoc. 2008; 3: 1101-1108
        • Von Kopylow K.
        • Kirchhoff C.
        • Jezek D.
        • Schulze W.
        • Feig C.
        • Primig M.
        • et al.
        Screening for biomarkers of spermatogonia within the human testis: a whole genome approach.
        Hum Reprod. 2010; 25: 1104-1112
        • Albrecht M.
        Insights into the nature of human testicular peritubular cells.
        Ann Anat. 2009; 191: 532-540
        • Ahmed E.A.
        • Barten-van Rijbroek A.D.
        • Kal H.B.
        • Sadri-Ardekani H.
        • Mizrak S.C.
        • van Pelt A.M.
        • et al.
        Proliferative activity in vitro and DNA repair indicate that adult mouse and human Sertoli cells are not terminally differentiated, quiescent cells.
        Biol Reprod. 2009; 80: 1084-1091
        • Bilinska B.
        • Kotula-Balak M.
        • Sadowska J.
        Morphology and function of human Leydig cells in vitro. Immunocytochemical and radioimmunological analyses.
        Eur J Histochem. 2009; 53: 35-42
        • Day I.N.
        • Thompson R.J.
        UCHL1 (PGP 9.5): neuronal biomarker and ubiquitin system protein.
        Prog Neurobiol. 2010; 90: 327-362
        • Tanaka T.
        • Gondo S.
        • Okabe T.
        • Ohe K.
        • Shirohzu H.
        • Morinaga H.
        • et al.
        Steroidogenic factor 1/adrenal 4 binding protein transforms human bone marrow mesenchymal cells into steroidogenic cells.
        J Mol Endocrinol. 2007; 39: 343-350
        • Svechnikov K.
        • Landreh L.
        • Weisser J.
        • Izzo G.
        • Colón E.
        • Svechnikova I.
        • et al.
        Origin, development and regulation of human Leydig cells.
        Horm Res Pædiatr. 2010; 73: 93-101
        • Chikhovskaya J.V.
        • van Daalen S.K.
        • Korver C.M.
        • Repping S.
        • van Pelt A.M.
        Mesenchymal origin of multipotent human testis-derived stem cells in human testicular cell cultures.
        Mol Hum Reprod. 2014; 20: 155-167
        • Albert S.
        • Ehmcke J.
        • Wistuba J.
        • Eildermann K.
        • Behr R.
        • Schlatt S.
        • et al.
        Germ cell dynamics in the testis of the postnatal common marmoset monkey (Callithrix jacchus).
        Reproduction. 2010; 140: 733-742
        • Cowan G.
        • Childs A.J.
        • Anderson R.A.
        • Saunders P.T.
        Establishment of long-term monolayer cultures of somatic cells from human fetal testes and expansion of peritubular myoid cells in the presence of androgen.
        Reproduction. 2010; 139: 749-757
        • Oatley J.M.
        • Brinster R.L.
        The germline stem cell niche unit in mammalian testes.
        Physiol Rev. 2012; 92: 577-595
        • Yang Y.
        • Han C.
        GDNF stimulates the proliferation of cultured mouse immature Sertoli cells via its receptor subunit NCAM and ERK1/2 signaling pathway.
        BMC Cell Biol. 2010; 11: 78
        • Kanatsu-Shinohara M.
        • Ogonuki N.
        • Inoue K.
        • Miki H.
        • Ogura A.
        • Toyokuni S.
        • et al.
        Long-term proliferation in culture and germline transmission of mouse male germline stem cells.
        Biol Reprod. 2003; 69: 612-616
        • Nagano M.
        • Ryu B.-Y.
        • Brinster C.J.
        • Avarbock M.R.
        • Brinster R.L.
        Maintenance of mouse male germ line stem cells in vitro.
        Biol Reprod. 2003; 68: 2207-2214
        • Langenstroth D.
        • Kossack N.
        • Westernströer B.
        • Wistuba J.
        • Behr R.
        • Gromoll J.
        • et al.
        Separation of somatic and germ cells is required to establish primate spermatogonial cultures.
        Hum Reprod. 2014; 29: 2018-2031
        • Lim J.J.
        • Sung S.-Y.
        • Kim H.J.
        • Song S.-H.
        • Hong J.Y.
        • Yoon T.K.
        • et al.
        Long-term proliferation and characterization of human spermatogonial stem cells obtained from obstructive and non-obstructive azoospermia under exogenous feeder-free culture conditions.
        Cell Prolif. 2010; 43: 405-417
        • Kokkinaki M.
        • Djourabtchi A.
        • Golestaneh N.
        Long-term culture of human SSEA-4 positive spermatogonial stem cells (SSCs).
        J Stem Cell Res Ther. 2011; 2: 2488
        • Baert Y.
        • Van Saen D.
        • Haentjens P.
        • Veld P.I.
        • Tournaye H.
        • Goossens E.
        What is the best cryopreservation protocol for human testicular tissue banking?.
        Hum Reprod. 2013; 28: 1816-1826