Cryopreservation and recovery of human endometrial epithelial cells with high viability, purity, and functional fidelity


      To develop a protocol for cryopreservation and recovery of human endometrial epithelial cells (eECs) retaining molecular and functional characteristics of endometrial epithelium in vivo.


      In vitro study using human endometrial cells.


      University research laboratory.


      Endometrial biopsies were obtained from premenopausal women undergoing benign gynecologic procedures.


      Primary eECs were cryopreserved in 1% fetal bovine serum/10% dimethylsulfoxide in Defined Keratinocyte Serum-Free Medium (KSFM). Recovered cells were observed for endometrial stromal fibroblast (eSF) contamination and subsequently evaluated for morphology, gene expression, and functional characteristics of freshly cultured eECs and in vivo endometrial epithelium.

      Main Outcome Measure(s)

      Analysis of eEC morphology and the absence of eSF contamination; evaluation of epithelial-specific gene and protein expression; assessment of epithelial polarity.


      Endometrial epithelial cells recovered after cryopreservation (n = 5) displayed epithelial morphology and expressed E-cadherin (CDH1), occludin (OCLN), claudin1 (CLDN1), and keratin18 (KRT18). Compared with eSF, recovered eECs displayed increased (P<.05) expression of epithelial-specific genes AREG, CDH1, DEFB4A, MMP7, and WNT7A, while exhibiting low-to-undetectable (P<.05) stromal-specific genes COL6A3, HOXA11, MMP2, PDGFRB, and WNT5A. Recovered eECs secreted levels of cytokines and growth factors similarly to freshly cultured eECs. Recovered eECs could form a polarized monolayer with high transepithelial electrical resistance (TER) and impermeability to small molecules, and expressed apical/basolateral localization of CDH1 and apical localization of OCLN.


      We have developed a protocol for cryopreservation of eECs in which recovered cells after thawing demonstrate morphologic, transcriptomic, and functional characteristics of human endometrial epithelium in vivo.

      Key Words

      To read this article in full you will need to make a payment


      Subscribe to Fertility and Sterility
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Aplin J.
        • Fazleabas A.
        • Glasser S.
        • Giudice L.
        The Endometrium: molecular, cellular, and clinical perspectives.
        2nd ed. Informa Healthcare, London2008
        • Giudice L.C.
        Elucidating endometrial function in the post-genomic era.
        Hum Reprod Update. 2003; 9: 223-235
        • Maruyama T.
        • Yoshimura Y.
        Molecular and cellular mechanisms for differentiation and regeneration of the uterine endometrium.
        Endocr J. 2008; 55: 795-810
        • Edgerton M.E.
        • Grizzle W.E.
        • Washington M.K.
        The deployment of a tissue request tracking system for the CHTN: a case study in managing change in informatics for biobanking operations.
        BMC Med Inform Decis Mak. 2010; 10: 32
        • Sheldon E.
        • Vo K.C.
        • McIntire R.A.
        • Aghajanova L.
        • Zelenko Z.
        • Irwin J.C.
        • et al.
        Biobanking human endometrial tissue and blood specimens: standard operating procedure and importance to reproductive biology research and diagnostic development.
        Fertil Steril. 2011; 95 (2120–2.e1–12)
        • Giudice L.C.
        Genomics’ role in understanding the pathogenesis of endometriosis.
        Semin Reprod Med. 2003; 21: 119-124
        • Irwin J.
        • Giudice L.
        The decidua.
        Academic Press, San Diego1998
        • Irwin J.C.
        • Kirk D.
        • King R.J.
        • Quigley M.M.
        • Gwatkin R.B.
        Hormonal regulation of human endometrial stromal cells in culture: an in vitro model for decidualization.
        Fertil Steril. 1989; 52: 761-768
        • Bongso A.
        • Gajra B.
        • Lian N.P.
        • Wong P.C.
        • Soon-Chye N.
        • Ratnam S.
        Establishment of human endometrial cell cultures.
        Hum Reprod. 1988; 3: 705-713
        • Classen-Linke I.
        • Kusche M.
        • Knauthe R.
        • Beier H.M.
        Establishment of a human endometrial cell culture system and characterization of its polarized hormone responsive epithelial cells.
        Cell Tissue Res. 1997; 287: 171-185
        • Fernandez-Shaw S.
        • Shorter S.C.
        • Naish C.E.
        • Barlow D.H.
        • Starkey P.M.
        Isolation and purification of human endometrial stromal and glandular cells using immunomagnetic microspheres.
        Hum Reprod. 1992; 7: 156-161
        • Gildea J.J.
        • McGrath H.E.
        • Van Sciver R.E.
        • Wang D.B.
        • Felder R.A.
        Isolation, growth, and characterization of human renal epithelial cells using traditional and 3D methods.
        Methods Mol Biol. 2013; 945: 329-345
        • Kedinger M.
        • Haffen K.
        • Simon-Assmann P.
        Intestinal tissue and cell cultures.
        Differentiation. 1987; 36: 71-85
        • Kirk D.
        • King R.J.
        • Heyes J.
        • Peachey L.
        • Hirsch P.J.
        • Taylor R.W.
        Normal human endometrium in cell culture. I. Separation and characterization of epithelial and stromal components in vitro.
        In Vitro. 1978; 14: 651-662
        • Murakami S.
        • Shibaya M.
        • Takeuchi K.
        • Skarzynski D.J.
        • Okuda K.
        A passage and storage system for isolated bovine endometrial epithelial and stromal cells.
        J Reprod Dev. 2003; 49: 531-538
        • Satyaswaroop P.G.
        • Bressler R.S.
        • de la Pena M.M.
        • Gurpide E.
        Isolation and culture of human endometrial glands.
        J Clin Endocrinol Metab. 1979; 48: 639-641
        • Trent J.M.
        • Davis J.R.
        • Payne C.M.
        The establishment and morphologic characterization of finite cell lines from normal human endometrium.
        Am J Obstet Gynecol. 1980; 136: 352-362
        • Blauer M.
        • Heinonen P.K.
        • Martikainen P.M.
        • Tomas E.
        • Ylikomi T.
        A novel organotypic culture model for normal human endometrium: regulation of epithelial cell proliferation by estradiol and medroxyprogesterone acetate.
        Hum Reprod. 2005; 20: 864-871
        • Kyo S.
        • Nakamura M.
        • Kiyono T.
        • Maida Y.
        • Kanaya T.
        • Tanaka M.
        • et al.
        Successful immortalization of endometrial glandular cells with normal structural and functional characteristics.
        Am J Pathol. 2003; 163: 2259-2269
        • Zhang L.
        • Rees M.C.
        • Bicknell R.
        The isolation and long-term culture of normal human endometrial epithelium and stroma. Expression of mRNAs for angiogenic polypeptides basally and on oestrogen and progesterone challenges.
        J Cell Sci. 1995; 108: 323-331
        • Chen J.C.
        • Erikson D.W.
        • Piltonen T.T.
        • Meyer M.R.
        • Barragan F.
        • McIntire R.H.
        • et al.
        Coculturing human endometrial epithelial cells and stromal fibroblasts alters cell-specific gene expression and cytokine production.
        Fertil Steril. 2013; 100: 1132-1143
        • Chen J.C.
        • Johnson B.A.
        • Erikson D.W.
        • Piltonen T.T.
        • Barragan F.
        • Chu S.
        • et al.
        Seminal plasma induces global transcriptomic changes associated with cell migration, proliferation and viability in endometrial epithelial cells and stromal fibroblasts.
        Hum Reprod. 2014; 29: 1255-1270
        • Kirk D.
        • Irwin J.C.
        Normal human endometrium in cell culture.
        Methods Cell Biol. 1980; 21B: 51-77
        • Bustin S.A.
        • Benes V.
        • Garson J.A.
        • Hellemans J.
        • Huggett J.
        • Kubista M.
        • et al.
        The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments.
        Clin Chem. 2009; 55: 611-622
        • Piltonen T.T.
        • Chen J.C.
        • Khatun M.
        • Kangasniemi M.
        • Liakka A.
        • Spitzer T.
        • et al.
        Endometrial stromal fibroblasts from women with polycystic ovary syndrome have impaired progesterone-mediated decidualization, aberrant cytokine profiles and promote enhanced immune cell migration in vitro.
        Hum Reprod. 2015; 30: 1203-1215
        • Janz Fde L.
        • Debes Ade A.
        • Cavaglieri Rde C.
        • Duarte S.A.
        • Romao C.M.
        • Moron A.F.
        • et al.
        Evaluation of distinct freezing methods and cryoprotectants for human amniotic fluid stem cells cryopreservation.
        J Biomed Biotechnol. 2012; 2012: 649353
        • Digirolamo C.M.
        • Stokes D.
        • Colter D.
        • Phinney D.G.
        • Class R.
        • Prockop D.J.
        Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate.
        Br J Haematol. 1999; 107: 275-281
        • Mirabet V.
        • Solves P.
        • Minana M.D.
        • Encabo A.
        • Carbonell-Uberos F.
        • Blanquer A.
        • et al.
        Human platelet lysate enhances the proliferative activity of cultured human fibroblast-like cells from different tissues.
        Cell Tissue Bank. 2008; 9: 1-10
        • Bull M.
        • Lee D.
        • Stucky J.
        • Chiu Y.L.
        • Rubin A.
        • Horton H.
        • et al.
        Defining blood processing parameters for optimal detection of cryopreserved antigen-specific responses for HIV vaccine trials.
        J Immunol Methods. 2007; 322: 57-69
        • Oldham R.K.
        • Dean J.H.
        • Cannon G.B.
        • Ortaldo J.R.
        • Dunston G.
        • Applebaum F.
        • et al.
        Cryopreservation of human lymphocyte function as measured by in vitro assays.
        Int J Cancer. 1976; 18: 145-155
        • Alipoor F.J.
        • Gilani M.A.
        • Eftekhari-Yazdi P.
        • Hampa A.D.
        • Hosseinifar H.
        • Alipour H.
        • et al.
        Achieving high survival rate following cryopreservation after isolation of prepubertal mouse spermatogonial cells.
        J Assist Reprod Genet. 2009; 26: 143-149
        • Lechner J.
        • LaVeck M.
        A serum-free method for culturing normal human bronchial epithelial cells at clonal density.
        J Tissue Cult Methods. 1985; 9: 43-48
        • Niknejad H.
        • Deihim T.
        • Peirovi H.
        • Abolghasemi H.
        Serum-free cryopreservation of human amniotic epithelial cells before and after isolation from their natural scaffold.
        Cryobiology. 2013; 67: 56-63
        • Fish E.M.
        • Molitoris B.A.
        Alterations in epithelial polarity and the pathogenesis of disease states.
        N Engl J Med. 1994; 330: 1580-1588
        • Jones R.L.
        • Hannan N.J.
        • Kaitu’u T.J.
        • Zhang J.
        • Salamonsen L.A.
        Identification of chemokines important for leukocyte recruitment to the human endometrium at the times of embryo implantation and menstruation.
        J Clin Endocrinol Metab. 2004; 89: 6155-6167
        • Fahey J.V.
        • Schaefer T.M.
        • Channon J.Y.
        • Wira C.R.
        Secretion of cytokines and chemokines by polarized human epithelial cells from the female reproductive tract.
        Hum Reprod. 2005; 20: 1439-1446
        • Kimura Y.
        • Shiozaki H.
        • Hirao M.
        • Maeno Y.
        • Doki Y.
        • Inoue M.
        • et al.
        Expression of occludin, tight-junction–associated protein, in human digestive tract.
        Am J Pathol. 1997; 151: 45-54
        • Aberle H.
        • Schwartz H.
        • Kemler R.
        Cadherin-catenin complex: protein interactions and their implications for cadherin function.
        J Cell Biochem. 1996; 61: 514-523
        • Jenkins P.M.
        • Vasavda C.
        • Hostettler J.
        • Davis J.Q.
        • Abdi K.
        • Bennett V.
        E-cadherin polarity is determined by a multifunction motif mediating lateral membrane retention through ankyrin-G and apical-lateral transcytosis through clathrin.
        J Biol Chem. 2013; 288: 14018-14031