Effects of bisphenol A on male and couple reproductive health: a review

  • Lidia Mínguez-Alarcón
    Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
    Search for articles by this author
  • Russ Hauser
    Reprint requests: Russ Hauser, M.D., Department of Environmental Health, Harvard T. H. Chan School of Public Health, 665 Huntington Ave., Boston, Massachusetts 02115.
    Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts

    Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts

    Vincent Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
    Search for articles by this author
  • Audrey J. Gaskins
    Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts

    Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
    Search for articles by this author
      Bisphenol A (BPA) is a ubiquitous environmental toxicant with endocrine-disrupting properties and is suspected to affect human reproduction. The objective of this review was to summarize the potential effects of male exposure to BPA on markers of testicular function and couple reproductive outcomes. Five epidemiologic studies on BPA and reproductive hormones all found significant associations with at least one reproductive hormone; however, no consistent relationships were observed across studies. Six epidemiologic studies evaluated the relation between BPA and semen parameters, and although the majority reported negative associations with various parameters, there were few consistent trends across studies. Finally, three epidemiologic studies examined BPA and couple reproductive outcomes, and only one found an association. Overall, the evidence supporting an association between BPA exposure and adverse male reproductive health outcomes in humans remains limited and inconclusive. Reasons for the discrepancies in results could include, but are not limited to, differences in study populations (e.g., fertile vs. subfertile men), BPA urinary concentrations (occupationally vs. nonoccupationally exposed), misclassification of BPA exposure (e.g., using one urine sample to characterize exposure vs. multiple samples), sample sizes, study design (e.g., cross-sectional vs. prospective), and residual confounding (e.g., due to diet and lifestyle factors). It is also possible that some of the statistically significant findings were due to chance alone. Clearly, further studies are needed to further clarify the role of this ubiquitous endocrine-disrupting chemical on male reproductive health.

      Key Words

      To read this article in full you will need to make a payment


      Subscribe to Fertility and Sterility
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Ehrlich S.
        • Calafat A.M.
        • Humblet O.
        • Smith T.
        • Hauser R.
        Handling of thermal receipts as a source of exposure to bisphenol A.
        JAMA. 2014; 311: 859-860
        • Calafat A.M.
        • Ye X.
        • Wong L.Y.
        • Reidy J.A.
        • Needham L.L.
        Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003–2004.
        Environ Health Perspect. 2008; 116: 39-44
      1. Centers for Disease Control and Prevention. Fourth report on human exposure to environmental chemicals, updated tables (February, 2015). Atlanta. Available at: Accessed August 6, 2016.

        • Vandenberg L.N.
        • Hauser R.
        • Marcus M.
        • Olea N.
        • Welshons W.V.
        Human exposure to bisphenol A (BPA).
        Reprod Toxicol. 2007; 24: 139-177
        • Gould J.C.
        • Leonard L.S.
        • Maness S.C.
        • Wagner B.L.
        • Conner K.
        • Zacharewski T.
        • et al.
        Bisphenol A interacts with the estrogen receptor alpha in a distinct manner from estradiol.
        Mol Cell Endocrinol. 1998; 142: 203-214
        • Kuiper G.G.
        • Lemmen J.G.
        • Carlsson B.
        • Corton J.C.
        • Safe S.H.
        • van der Saag P.T.
        • et al.
        Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta.
        Endocrinology. 1998; 139: 4252-4263
        • Dong S.
        • Terasaka S.
        • Kiyama R.
        Bisphenol A induces a rapid activation of Erk1/2 through GPR30 in human breast cancer cells.
        Environ Pollut. 2011; 159: 212-218
        • Wozniak A.L.
        • Bulayeva N.N.
        • Watson C.S.
        Xenoestrogens at picomolar to nanomolar concentrations trigger membrane estrogen receptor-alpha-mediated Ca2+ fluxes and prolactin release in GH3/B6 pituitary tumor cells.
        Environ Health Perspect. 2005; 113: 431-439
        • Matsushima A.
        • Kakuta Y.
        • Teramoto T.
        • Koshiba T.
        • Liu X.
        • Okada H.
        • et al.
        Structural evidence for endocrine disruptor bisphenol A binding to human nuclear receptor ERR gamma.
        J Biochem. 2007; 142: 517-524
        • Okada H.
        • Tokunaga T.
        • Liu X.
        • Takayanagi S.
        • Matsushima A.
        • Shimohigashi Y.
        Direct evidence revealing structural elements essential for the high binding ability of bisphenol A to human estrogen-related receptor-gamma.
        Environ Health Perspect. 2008; 116: 32-38
        • Richter C.A.
        • Birnbaum L.S.
        • Farabollini F.
        • Newbold R.R.
        • Rubin B.S.
        • Talsness C.E.
        • et al.
        In vivo effects of bisphenol A in laboratory rodent studies.
        Reprod Toxicol. 2007; 24: 199-224
        • Dobrzynska M.M.
        • Radzikowska J.
        Genotoxicity and reproductive toxicity of bisphenol A and X-ray/bisphenol A combination in male mice.
        Drug Chem Toxicol. 2013; 36: 19-26
        • Tainaka H.
        • Takahashi H.
        • Umezawa M.
        • Tanaka H.
        • Nishimune Y.
        • Oshio S.
        • et al.
        Evaluation of the testicular toxicity of prenatal exposure to bisphenol A based on microarray analysis combined with MeSH annotation.
        J Toxicol Sci. 2012; 37: 539-548
        • Tiwari D.
        • Vanage G.
        Mutagenic effect of Bisphenol A on adult rat male germ cells and their fertility.
        Reprod Toxicol. 2013; 40: 60-68
        • Salian S.
        • Doshi T.
        • Vanage G.
        Neonatal exposure of male rats to bisphenol A impairs fertility and expression of sertoli cell junctional proteins in the testis.
        Toxicology. 2009; 265: 56-67
        • Qiu L.L.
        • Wang X.
        • Zhang X.H.
        • Zhang Z.
        • Gu J.
        • Liu L.
        • et al.
        Decreased androgen receptor expression may contribute to spermatogenesis failure in rats exposed to low concentration of bisphenol A.
        Toxicol Lett. 2013; 219: 116-124
        • Minamiyama Y.
        • Ichikawa H.
        • Takemura S.
        • Kusunoki H.
        • Naito Y.
        • Yoshikawa T.
        Generation of reactive oxygen species in sperms of rats as an earlier marker for evaluating the toxicity of endocrine-disrupting chemicals.
        Free Radic Res. 2010; 44: 1398-1406
        • Chitra K.C.
        • Latchoumycandane C.
        • Mathur P.P.
        Induction of oxidative stress by bisphenol A in the epididymal sperm of rats.
        Toxicology. 2003; 185: 119-127
        • Liu C.
        • Duan W.
        • Li R.
        • Xu S.
        • Zhang L.
        • Chen C.
        • et al.
        Exposure to bisphenol A disrupts meiotic progression during spermatogenesis in adult rats through estrogen-like activity.
        Cell Death Dis. 2013; 4: e676
        • Rashid H.
        • Ahmad F.
        • Rahman S.
        • Ansari R.A.
        • Bhatia K.
        • Kaur M.
        • et al.
        Iron deficiency augments bisphenol A–induced oxidative stress in rats.
        Toxicology. 2009; 256: 7-12
        • Wu H.J.
        • Liu C.
        • Duan W.X.
        • Xu S.C.
        • He M.D.
        • Chen C.H.
        • et al.
        Melatonin ameliorates bisphenol A–induced DNA damage in the germ cells of adult male rats.
        Mutat Res. 2013; 752: 57-67
        • D'Cruz S.C.
        • Jubendradass R.
        • Mathur P.P.
        Bisphenol A induces oxidative stress and decreases levels of insulin receptor substrate 2 and glucose transporter 8 in rat testis.
        Reprod Sci. 2012; 19: 163-172
        • d'Cruz S.C.
        • Jubendradass R.
        • Jayakanthan M.
        • Rani S.J.
        • Mathur P.P.
        Bisphenol A impairs insulin signaling and glucose homeostasis and decreases steroidogenesis in rat testis: an in vivo and in silico study.
        Food Chem Toxicol. 2012; 50: 1124-1133
        • Kabuto H.
        • Hasuike S.
        • Minagawa N.
        • Shishibori T.
        Effects of bisphenol A on the metabolisms of active oxygen species in mouse tissues.
        Environ Res. 2003; 93: 31-35
        • Anjum S.
        • Rahman S.
        • Kaur M.
        • Ahmad F.
        • Rashid H.
        • Ansari R.A.
        • et al.
        Melatonin ameliorates bisphenol A–induced biochemical toxicity in testicular mitochondria of mouse.
        Food Chem Toxicol. 2011; 49: 2849-2854
        • Fang Y.
        • Zhou Y.
        • Zhong Y.
        • Gao X.
        • Tan T.
        Wei Sheng Yan Jiu. 2013; 42 (Chinese): 18-22
        • Salian S.
        • Doshi T.
        • Vanage G.
        Perinatal exposure of rats to Bisphenol A affects the fertility of male offspring.
        Life Sci. 2009; 85: 742-752
        • El-Beshbishy H.A.
        • Aly H.A.
        • El-Shafey M.
        Lipoic acid mitigates bisphenol A-induced testicular mitochondrial toxicity in rats.
        Toxicol Ind Health. 2013; 29: 875-887
        • Xi W.
        • Lee C.K.
        • Yeung W.S.
        • Giesy J.P.
        • Wong M.H.
        • Zhang X.
        • et al.
        Effect of perinatal and postnatal bisphenol A exposure to the regulatory circuits at the hypothalamus-pituitary-gonadal axis of CD-1 mice.
        Reprod Toxicol. 2011; 31: 409-417
        • Howdeshell K.L.
        • Furr J.
        • Lambright C.R.
        • Wilson V.S.
        • Ryan B.C.
        • Gray Jr., L.E.
        Gestational and lactational exposure to ethinyl estradiol, but not bisphenol A, decreases androgen-dependent reproductive organ weights and epididymal sperm abundance in the male long evans hooded rat.
        Toxicol Sci. 2008; 102: 371-382
        • Kobayashi K.
        • Ohtani K.
        • Kubota H.
        • Miyagawa M.
        Dietary exposure to low doses of bisphenol A: effects on reproduction and development in two generations of C57BL/6J mice.
        Congenit Anom (Kyoto). 2010; 50: 159-170
        • LaRocca J.
        • Boyajian A.
        • Brown C.
        • Smith S.D.
        • Hixon M.
        Effects of in utero exposure to bisphenol A or diethylstilbestrol on the adult male reproductive system.
        Birth Defects Res B Dev Reprod Toxicol. 2011; 92: 526-533
        • Tyl R.W.
        • Myers C.B.
        • Marr M.C.
        • Sloan C.S.
        • Castillo N.P.
        • Veselica M.M.
        • et al.
        Two-generation reproductive toxicity study of dietary bisphenol A in CD-1 (Swiss) mice.
        Toxicol Sci. 2008; 104: 362-384
        • Hanaoka T.
        • Kawamura N.
        • Hara K.
        • Tsugane S.
        Urinary bisphenol A and plasma hormone concentrations in male workers exposed to bisphenol A diglycidyl ether and mixed organic solvents.
        Occup Environ Med. 2002; 59: 625-628
        • Galloway T.
        • Cipelli R.
        • Guralnik J.
        • Ferrucci L.
        • Bandinelli S.
        • Corsi A.M.
        • et al.
        Daily bisphenol A excretion and associations with sex hormone concentrations: results from the INCHIANTI adult population study.
        Environ Health Perspect. 2010; 118: 1603-1608
        • Meeker J.D.
        • Ehrlich S.
        • Toth T.L.
        • Wright D.L.
        • Calafat A.M.
        • Trisini A.T.
        • et al.
        Semen quality and sperm DNA damage in relation to urinary bisphenol A among men from an infertility clinic.
        Reprod Toxicol. 2010; 30: 532-539
        • Meeker J.D.
        • Calafat A.M.
        • Hauser R.
        Urinary bisphenol A concentrations in relation to serum thyroid and reproductive hormone levels in men from an infertility clinic.
        Environ Sci Technol. 2010; 44: 1458-1463
        • Mendiola J.
        • Jorgensen N.
        • Andersson A.M.
        • Calafat A.M.
        • Ye X.
        • Redmon J.B.
        • et al.
        Are environmental levels of bisphenol a associated with reproductive function in fertile men?.
        Environ Health Perspect. 2010; 118: 1286-1291
        • Li D.K.
        • Zhou Z.
        • Miao M.
        • He Y.
        • Wang J.
        • Ferber J.
        • et al.
        Urine bisphenol-A (BPA) level in relation to semen quality.
        Fertil Steril. 2011; 95: 625-630.e1–4
        • Buck Louis G.M.
        • Sundaram R.
        • Sweeney A.M.
        • Schisterman E.F.
        • Maisog J.
        • Kannan K.
        Urinary bisphenol A, phthalates, and couple fecundity: the Longitudinal Investigation of Fertility and the Environment (LIFE) study.
        Fertil Steril. 2014; 101: 1359-1366
        • Knez J.
        • Kranvogl R.
        • Breznik B.P.
        • Voncina E.
        • Vlaisavljevic V.
        Are urinary bisphenol A levels in men related to semen quality and embryo development after medically assisted reproduction?.
        Fertil Steril. 2014; 101: 215-221.e5
        • Lassen T.H.
        • Frederiksen H.
        • Jensen T.K.
        • Petersen J.H.
        • Joensen U.N.
        • Main K.M.
        • et al.
        Urinary bisphenol A levels in young men: association with reproductive hormones and semen quality.
        Environ Health Perspect. 2014; 122: 478-484
        • Bae J.
        • Kim S.
        • Kannan K.
        • Buck Louis G.M.
        Couples' urinary bisphenol A and phthalate metabolite concentrations and the secondary sex ratio.
        Environ Res. 2015; 137: 450-457
        • Dodge L.E.
        • Williams P.L.
        • Williams M.A.
        • Missmer S.A.
        • Toth T.L.
        • Calafat A.M.
        • et al.
        Paternal urinary concentrations of parabens and other phenols in relation to reproductive outcomes among couples from a fertility clinic.
        Environ Health Perspect. 2015; 123: 665-671
        • Goldstone A.E.
        • Chen Z.
        • Perry M.J.
        • Kannan K.
        • Louis G.M.
        Urinary bisphenol A and semen quality, the LIFE study.
        Reprod Toxicol. 2015; 51: 7-13
        • Xiao G.B.
        • Wang R.Y.
        • Cai Y.Z.
        • He G.H.
        • Zhou Z.J.
        Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2009; 27 (Chinese): 741-743
        • Zhuang W.
        • Wu K.
        • Wang Y.
        • Zhu H.
        • Deng Z.
        • Peng L.
        • et al.
        Association of serum bisphenol-A concentration and male reproductive function among exposed workers.
        Arch Environ Contam Toxicol. 2015; 68: 38-45
        • Zhou Q.
        • Miao M.
        • Ran M.
        • Ding L.
        • Bai L.
        • Wu T.
        • et al.
        Serum bisphenol-A concentration and sex hormone levels in men.
        Fertil Steril. 2013; 100: 478-482
        • Vitku J.
        • Sosvorova L.
        • Chlupacova T.
        • Hampl R.
        • Hill M.
        • Sobotka V.
        • et al.
        Differences in bisphenol A and estrogen levels in the plasma and seminal plasma of men with different degrees of infertility.
        Physiol Res. 2015; 64 Suppl 2: S303-S311
        • Vitku J.
        • Heracek J.
        • Sosvorova L.
        • Hampl R.
        • Chlupacova T.
        • Hill M.
        • et al.
        Associations of bisphenol A and polychlorinated biphenyls with spermatogenesis and steroidogenesis in two biological fluids from men attending an infertility clinic.
        Environ Int. 2016; 89–90: 166-173
        • Calafat A.M.
        • Longnecker M.P.
        • Koch H.M.
        • Swan S.H.
        • Hauser R.
        • Goldman L.R.
        • et al.
        Optimal exposure biomarkers for nonpersistent chemicals in environmental epidemiology.
        Environ Health Perspect. 2015; 123: A166-A168