Advertisement

Accurate quantitation of mitochondrial DNA reveals uniform levels in human blastocysts irrespective of ploidy, age, or implantation potential

      Objective

      To accurately determine mitochondrial DNA (mtDNA) levels in human blastocysts.

      Design

      Retrospective analysis.

      Setting

      IVF clinic.

      Patient(s)

      A total of 1,396 embryos derived from 259 patients.

      Intervention(s)

      Blastocyst-derived trophectoderm biopsies were tested by next-generation sequencing (NGS) and quantitative real-time polymerase chain reaction (qPCR).

      Main Outcome Measure(s)

      For each sample the mtDNA value was divided by the nuclear DNA value, and the result was further subjected to mathematical analysis tailored to the genetic makeup of the source embryo.

      Result(s)

      On average the mathematical correction factor changed the conventionally determined mtDNA score of a given blastocyst via NGS by 1.43% ± 1.59% (n = 1,396), with maximal adjustments of 17.42%, and via qPCR by 1.33% ± 8.08% (n = 150), with maximal adjustments of 50.00%. Levels of mtDNA in euploid and aneuploid embryos showed a statistically insignificant difference by NGS (euploids n = 775, aneuploids n = 621) and by qPCR (euploids n = 100, aneuploids n = 50). Blastocysts derived from younger or older patients had comparable mtDNA levels by NGS (“young” age group n = 874, “advanced” age group n = 514) and by qPCR (“young” age group n = 92, “advanced” age group n = 58). Viable blastocysts did not contain significantly different mtDNA levels compared with unviable blastocysts when analyzed by NGS (implanted n = 101, nonimplanted n = 140) and by qPCR (implanted n = 49, nonimplanted n = 51).

      Conclusion(s)

      We recommend implementation of the correction factor calculation to laboratories evaluating mtDNA levels in embryos by NGS or qPCR. When applied to our in-house data, the calculation reveals that overall levels of mtDNA are largely equal between blastocysts stratified by ploidy, age, or implantation potential.

      Key Words

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Fertility and Sterility
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Seli E.
        Mitochondrial DNA as a biomarker for in-vitro fertilization outcome.
        Curr Opin Obstet Gynecol. 2016; 28: 158-163
        • Wai T.
        • Ao A.
        • Zhang X.
        • Cyr D.
        • Dufort D.
        • Shoubridge E.A.
        The role of mitochondrial DNA copy number in mammalian fertility.
        Biol Reprod. 2010; 83: 52-62
        • Clay Montier L.L.
        • Deng J.J.
        • Bai Y.
        Number matters: control of mammalian mitochondrial DNA copy number.
        J Genet Genomics. 2009; 36: 125-131
        • Diez-Juan A.
        • Rubio C.
        • Marin C.
        • Martinez S.
        • Al-Asmar N.
        • Riboldi M.
        • et al.
        Mitochondrial DNA content as a viability score in human euploid embryos: less is better.
        Fertil Steril. 2015; 104: 534-541.e1
        • Fragouli E.
        • Spath K.
        • Alfarawati S.
        • Kaper F.
        • Craig A.
        • Michel C.E.
        • et al.
        Altered levels of mitochondrial DNA are associated with female age, aneuploidy, and provide an independent measure of embryonic implantation potential.
        PLoS Genet. 2015; 11: e1005241
        • Tan Y.
        • Yin X.
        • Zhang S.
        • Jiang H.
        • Tan K.
        • Li J.
        • et al.
        Clinical outcome of preimplantation genetic diagnosis and screening using next generation sequencing.
        Gigascience. 2014; 3: 30
        • Leese H.J.
        Quiet please, do not disturb: a hypothesis of embryo metabolism and viability.
        Bioessays. 2002; 24: 845-849
        • Hirai K.
        • Aliev G.
        • Nunomura A.
        • Fujioka H.
        • Russell R.L.
        • Atwood C.S.
        • et al.
        Mitochondrial abnormalities in Alzheimer’s disease.
        J Neurosci. 2001; 21: 3017-3023
        • Phillips N.R.
        • Sprouse M.L.
        • Roby R.K.
        Simultaneous quantification of mitochondrial DNA copy number and deletion ratio: a multiplex real-time PCR assay.
        Sci Rep. 2014; 4: 3887
        • Reznik E.
        • Miller M.L.
        • Senbabaoglu Y.
        • Riaz N.
        • Sarungbam J.
        • Tickoo S.K.
        • et al.
        Mitochondrial DNA copy number variation across human cancers.
        Elife. 2016; 5
        • Richly E.
        • Leister D.
        NUMTs in sequenced eukaryotic genomes.
        Mol Biol Evol. 2004; 21: 1081-1084
        • Baer M.
        • Nilsen T.W.
        • Costigan C.
        • Altman S.
        Structure and transcription of a human gene for H1 RNA, the RNA component of human RNase P.
        Nucleic Acids Res. 1990; 18: 97-103
        • Livak K.J.
        • Schmittgen T.D.
        Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.
        Methods. 2001; 25: 402-408
        • Moraes C.T.
        What regulates mitochondrial DNA copy number in animal cells?.
        Trends Genet. 2001; 17: 199-205
        • Shadel G.S.
        • Clayton D.A.
        Mitochondrial DNA maintenance in vertebrates.
        Annu Rev Biochem. 1997; 66: 409-435
        • D’Erchia A.M.
        • Atlante A.
        • Gadaleta G.
        • Pavesi G.
        • Chiara M.
        • De Virgilio C.
        • et al.
        Tissue-specific mtDNA abundance from exome data and its correlation with mitochondrial transcription, mass and respiratory activity.
        Mitochondrion. 2015; 20: 13-21
        • Deleye L.
        • De Coninck D.
        • Christodoulou C.
        • Sante T.
        • Dheedene A.
        • Heindryckx B.
        • et al.
        Whole genome amplification with SurePlex results in better copy number alteration detection using sequencing data compared to the MALBAC method.
        Sci Rep. 2015; 5: 11711
        • Hormozdiari F.
        • Alkan C.
        • Ventura M.
        • Hajirasouliha I.
        • Malig M.
        • Hach F.
        • et al.
        Alu repeat discovery and characterization within human genomes.
        Genome Res. 2011; 21: 840-849
        • Mills R.E.
        • Bennett E.A.
        • Iskow R.C.
        • Devine S.E.
        Which transposable elements are active in the human genome?.
        Trends Genet. 2007; 23: 183-191
        • Wildschutte J.H.
        • Baron A.
        • Diroff N.M.
        • Kidd J.M.
        Discovery and characterization of Alu repeat sequences via precise local read assembly.
        Nucleic Acids Res. 2015; 43: 10292-10307
        • Cavelier L.
        • Johannisson A.
        • Gyllensten U.
        Analysis of mtDNA copy number and composition of single mitochondrial particles using flow cytometry and PCR.
        Exp Cell Res. 2000; 259: 79-85
        • Satoh M.
        • Kuroiwa T.
        Organization of multiple nucleoids and DNA molecules in mitochondria of a human cell.
        Exp Cell Res. 1991; 196: 137-140
        • Navratil M.
        • Poe B.G.
        • Arriaga E.A.
        Quantitation of DNA copy number in individual mitochondrial particles by capillary electrophoresis.
        Anal Chem. 2007; 79: 7691-7699
        • Larsen S.
        • Nielsen J.
        • Hansen C.N.
        • Nielsen L.B.
        • Wibrand F.
        • Stride N.
        • et al.
        Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects.
        J Physiol. 2012; 590: 3349-3360
        • Reynier P.
        • May-Panloup P.
        • Chretien M.F.
        • Morgan C.J.
        • Jean M.
        • Savagner F.
        • et al.
        Mitochondrial DNA content affects the fertilizability of human oocytes.
        Mol Hum Reprod. 2001; 7: 425-429
        • El Shourbagy S.H.
        • Spikings E.C.
        • Freitas M.
        • St. John J.C.
        Mitochondria directly influence fertilisation outcome in the pig.
        Reproduction. 2006; 131: 233-245
        • Hua S.
        • Zhang Y.
        • Li X.C.
        • Ma L.B.
        • Cao J.W.
        • Dai J.P.
        • et al.
        Effects of granulosa cell mitochondria transfer on the early development of bovine embryos in vitro.
        Cloning Stem Cells. 2007; 9: 237-246
        • Santos T.A.
        • El Shourbagy S.
        • St. John J.C.
        Mitochondrial content reflects oocyte variability and fertilization outcome.
        Fertil Steril. 2006; 85: 584-591
        • Tamassia M.
        • Nuttinck F.
        • May-Panloup P.
        • Reynier P.
        • Heyman Y.
        • Charpigny G.
        • et al.
        In vitro embryo production efficiency in cattle and its association with oocyte adenosine triphosphate content, quantity of mitochondrial DNA, and mitochondrial DNA haplogroup.
        Biol Reprod. 2004; 71: 697-704
        • Chiaratti M.R.
        • Bressan F.F.
        • Ferreira C.R.
        • Caetano A.R.
        • Smith L.C.
        • Vercesi A.E.
        • et al.
        Embryo mitochondrial DNA depletion is reversed during early embryogenesis in cattle.
        Biol Reprod. 2010; 82: 76-85