Dynamic expression of PGRMC1 and SERBP1 in human endometrium: an implication in the human decidualization process

  • Stefania Salsano
    Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto Universitario IVI (IUIVI), Valencia, Spain
    Search for articles by this author
  • Alicia Quiñonero
    Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto Universitario IVI (IUIVI), Valencia, Spain
    Search for articles by this author
  • Silvia Pérez
    Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto Universitario IVI (IUIVI), Valencia, Spain
    Search for articles by this author
  • Tamara Garrido Gómez
    Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto Universitario IVI (IUIVI), Valencia, Spain

    Igenomix Academy, Valencia, Spain

    Department of Pediatrics, Obstetrics and Gynaecology, School of Medicine, Valencia University, Valencia, Spain
    Search for articles by this author
  • Carlos Simón
    Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto Universitario IVI (IUIVI), Valencia, Spain

    INCLIVA Biomedical Research Institute, Valencia, Spain

    Igenomix Academy, Valencia, Spain

    Department of Pediatrics, Obstetrics and Gynaecology, School of Medicine, Valencia University, Valencia, Spain

    Department of Obstetrics and Gynaecology, Stanford University School of Medicine, Stanford, California
    Search for articles by this author
  • Francisco Dominguez
    Reprint requests: Francisco Dominguez, Ph.D., C/Catedratico Escardino, 9 Edificio 3 46980 Paterna, Valencia, Spain.
    Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto Universitario IVI (IUIVI), Valencia, Spain

    INCLIVA Biomedical Research Institute, Valencia, Spain
    Search for articles by this author


      To characterize PGRMC1 and SERBP1 in human endometrium and to investigate the putative role of PGRMC1 in endometrial decidualization.


      The PGRMC1 and SERBP1 expression in human endometrium was determined throughout the menstrual cycle. We analyzed the colocalization of PGRMC1 and SERBP1. Then, endometrial stromal cells (ESCs) were isolated to investigate the functional effect of PGRMC1 overexpression on decidualization.


      IVI clinic.


      Endometrial biopsies were collected from fertile volunteers (n = 61) attending the clinic as ovum donors.


      Endometrial samples of 61 healthy fertile women.

      Main Outcome Measure(s)

      In vivo localization of PGRMC1 and SERBP1 was assessed by immunohistochemistry. The PGRMC1/SERBP1 colocalization was investigated in vitro and in vivo. Decidualization effect of PGRMC1 overexpression was evaluated in primary ESC cultures.


      The PGRMC1 was detected in the endometrial stroma throughout the menstrual cycle, but decreased in the late secretory phase. The SERBP1 immunostaining was present in stroma and increased in the entire the menstrual cycle. The PGRMC1 and SERBP1 colocalized in the cytoplasmic fractions of nondecidualized and decidualized ESC. The PGRMC1 overexpression significantly inhibited in vitro decidualization.


      Our results suggest that classic P receptors (PRs) are not the only kind playing a role in the normal physiology of the endometrium. The human decidualization process could be altered by the overexpression or mislocalization of PGRMC1 in ESC.

      Key Words

      To read this article in full you will need to make a payment


        • Cha J.
        • Sun X.
        • Dey S.K.
        Mechanisms of implantation: strategies for successful pregnancy.
        Nat Med. 2012; 18: 1754-1767
        • Garrido-Gomez T.
        • Dominguez F.
        • Lopez J.A.
        • Camafeita E.
        • Quiñonero A.
        • Martinez-Conejero J.A.
        • et al.
        Modeling human endometrial decidualization from the interaction between proteome and secretome.
        J Clin Endocrinol Metab. 2011; 96: 706-716
        • Das S.K.
        Cell cycle regulatory control for uterine stromal cell decidualization in implantation.
        Reproduction. 2009; 137: 889-899
        • Simón C.
        • Moreno C.
        • Remohí J.
        • Pellicer A.
        Cytokines and embryo implantation.
        J Reprod Immunol. 1998; 39: 117-131
        • Guzeloglu-Kayisli O.
        • Kayisli U.A.
        • Taylor H.S.
        The role of growth factors and cytokines during implantation: endocrine and paracrine interactions.
        Semin Reprod Med. 2009; 27: 62-79
        • Zhu H.
        • Hou C.-C.
        • Luo L.-F.
        • Hu Y.-J.
        • Yang W.-X.
        Endometrial stromal cells and decidualized stromal cells: origins, transformation and functions.
        Gene. 2014; 551: 1-14
        • Daly D.C.
        • Maslar I.A.
        • Riddick D.H.
        Prolactin production during in vitro decidualization of proliferative endometrium.
        Am J Obstet Gynecol. 1983; 145: 672-678
        • Leonhardt S.A.
        • Boonyaratanakornkit V.
        • Edwards D.P.
        Progesterone receptor transcription and non-transcription signaling mechanisms.
        Steroids. 2003; 68: 761-770
        • Ghosh K.
        • Thompson A.M.
        • Goldbeck R.A.
        • Shi X.
        • Whitman S.
        • Oh E.
        • et al.
        Spectroscopic and biochemical characterization of heme binding to yeast Dap1p and mouse PGRMC1p+ kaushik.
        Biochemistry. 2005; 44: 16729-16736
        • Gerdes D.
        • Wehling M.
        • Leube B.
        • Falkenstein E.
        Cloning and tissue expression of two putative steroid membrane receptors.
        Biol Chem. 1998; 379: 907-911
        • Ahmed I.S.
        • Rohe H.J.
        • Twist K.E.
        • Mattingly M.N.
        • Craven R.J.
        Progesterone receptor membrane component 1 ( Pgrmc1 ): a Heme-1 domain protein that promotes tumorigenesis and is inhibited by a small molecule.
        J Pharmacol Exp Ther. 2010; 333: 564-573
        • Peluso J.J.
        Progesterone signaling mediated through progesterone receptor membrane component-1 in ovarian cells with special emphasis on ovarian cancer.
        Steroids. 2011; 76: 903-909
        • Li L.
        • Zhang J.
        • Deng Q.
        • Li J.
        • Li Z.
        • Xiao Y.
        • et al.
        Proteomic profiling for identification of novel biomarkers differentially expressed in human ovaries from polycystic ovary syndrome patients.
        PLoS One. 2016; 11: 1-13
        • Mifsud W.
        • Bateman A.
        Membrane-bound progesterone receptors contain a cytochrome b5-like ligand-binding domain.
        Genome Biol. 2002; 3: 1-5
        • Kaluka D.
        • Batabyal D.
        • Chiang B.
        • Poulos T.L.
        • Yeh S.
        Spectroscopic and mutagenesis studies of human PGRMC1.
        Biochemistry. 2015; 54: 1638-1647
        • Falkenstein E.
        • Meyer C.
        • Eisen C.
        • Scriba P.C.
        • Wehling M.
        Full-length cDNA sequence of a progesterone membrane-binding protein from porcine vascular smooth muscle cells.
        Biochem Biophys Res Commun. 1996; 229: 86-89
        • Meyer C.
        • Schmid R.
        • Scriba P.C.
        • Wehling M.
        Purification and partial sequencing of high-affinity progesterone-binding site(s) from porcine liver membranes.
        Eur J Biochem. 1996; 239: 726-731
        • Peluso J.J.
        • Liu X.
        • Gawkowska A.
        • Johnston-MacAnanny E.
        Progesterone activates a progesterone receptor membrane component 1-dependent mechanism that promotes human granulosa/luteal cell survival but not progesterone secretion.
        J Clin Endocrinol Metab. 2009; 94: 2644-2649
        • Friel A.M.
        • Zhang L.
        • Pru C.A.
        • Clark N.C.
        • McCallum M.L.
        • Blok L.J.
        • et al.
        Progesterone receptor membrane component 1 deficiency attenuates growth while promoting chemosensitivity of human endometrial xenograft tumors.
        Cancer Lett. 2015; 356: 434-442
        • Peluso J.J.
        Progesterone receptor membrane component 1 and its role in ovarian follicle growth.
        Front Neurosci. 2013; 7: 99
        • Peluso J.J.
        • Pru J.K.
        Non-canonical progesterone signaling in granulosa cell function.
        Reproduction. 2014; 147: R169-R178
        • Cahill M.A.
        Progesterone receptor membrane component 1: an integrative review.
        J Steroid Biochem Mol Biol. 2007; 105: 16-36
        • Lösel R.M.
        • Besong D.
        • Peluso J.J.
        • Wehling M.
        Progesterone receptor membrane component 1—many tasks for a versatile protein.
        Steroids. 2008; 73: 929-934
        • Zhang L.
        • Kanda Y.
        • Roberts D.J.
        • Ecker J.L.
        • Losel R.
        • Wehling M.
        • et al.
        Expression of progesterone receptor membrane component 1 and its partner serpine 1 mRNA binding protein in uterine and placental tissues of the mouse and human.
        Mol Cell Endocrinol. 2008; 287: 81-89
        • Peluso J.J.
        • Pappalardo A.
        • Losel R.
        • Wehling M.
        Progesterone membrane receptor component 1 expression in the immature rat ovary and its role in mediating progesterone's antiapoptotic action.
        Endocrinology. 2006; 147: 3133-3140
        • Lodde V.
        • Peluso J.J.
        A novel role for progesterone and progesterone receptor membrane component 1 in regulating spindle microtubule stability during rat and human ovarian cell mitosis.
        Biol Reprod. 2011; 84: 715-722
        • Luciano A.M.
        • Lodde V.
        • Franciosi F.
        • Ceciliani F.
        • Peluso J.J.
        Progesterone receptor membrane component 1 expression and putative function in bovine oocyte maturation, fertilization, and early embryonic development.
        Reproduction. 2010; 140: 663-672
        • Heaton J.H.
        • Dlakic W.M.
        • Dlakic M.
        • Gelehrter T.D.
        Identification and cDNA cloning of a novel RNA-binding protein that interacts with the cyclic nucleotide-responsive sequence in the Type-1 plasminogen activator inhibitor mRNA.
        J Biol Chem. 2001; 276: 3341-3347
        • Garrido-Gómez T.
        • Quiñonero A.
        • Antúnez O.
        • Díaz-Gimeno P.
        • Bellver J.
        • Simón C.
        • et al.
        Deciphering the proteomic signature of human endometrial receptivity.
        Hum Reprod. 2014; 29: 1957-1967
        • Dominguez F.
        • Gadea B.
        • Mercader A.
        • Esteban F.J.
        • Pellicer A.
        • Simón C.
        Embryologic outcome and secretome profile of implanted blastocysts obtained after coculture in human endometrial epithelial cells versus the sequential system.
        Fertil Steril. 2010; 93: 774-782.e1
        • Dominguez F.
        • Galan A.
        • Martin J.J.L.
        • Remohi J.
        • Pellicer A.
        • Simón C.
        Hormonal and embryonic regulation of chemokine receptors CXCR1, CXCR4, CCR5 and CCR2B in the human endometrium and the human blastocyst.
        Mol Hum Reprod. 2003; 9: 189-198
        • Livak K.J.
        • Schmittgen T.D.
        Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.
        Methods. 2001; 25: 402-408
        • Luetjens C.M.
        • Didolkar A.
        • Kliesch S.
        • Paulus W.
        • Jeibmann A.
        • Böcker W.
        • et al.
        Tissue expression of the nuclear progesterone receptor in male non-human primates and men.
        J Endocrinol. 2006; 189: 529-539
        • Ehring G.R.
        • Kerschbaum H.H.
        • Eder C.
        • Neben A.L.
        • Fanger C.M.
        • Khoury R.M.
        • et al.
        A nongenomic mechanism for progesterone-mediated immunosuppression: inhibition of K+ channels, Ca2+ signaling, and gene expression in T lymphocytes.
        J Exp Med. 1998; 188: 1593-1602
        • Peluso J.
        • Fernandez G.
        • Pappalardo A.
        • White B.
        Membrane-initiated events account for progesterone's ability to regulate intracellular free calcium levels and inhibit rat granulosa cell mitosis.
        Biol Reprod. 2002; 67: 379-385
        • Frye C.A.
        • Walf A.A.
        • Petralia S.M.
        Progestins' effects on sexual behaviour of female rats and hamsters involving D1 and GABAA receptors in the ventral tegmental area may be G-protein-dependent.
        Behav Brain Res. 2006; 172: 286-293
        • Finidori-Lepicard J.
        • Schorderet-Slatkine S.
        • Hanoune J.
        • Baulieu E.
        Progesterone inhibits membrane-bound adenylate cyclase in Xenopus laevis oocytes.
        Nature. 1981; 292: 255-257
        • Foresta C.
        • Rossato M.
        • di Virgilio F.
        Ion fluxes through the progesterone-activated channel of the sperm plasma membrane.
        Biochem J. 1993; 294: 279-283
        • Head G.
        • Downing J.
        • Brucker C.
        • Mentlein R.
        • Kendall M.
        Rapid progesterone actions on thymulin-secreting epithelial cells cultured from rat thymus.
        Neuroimmunomodulation. 1999; 6: 31-38
        • Viéro C.
        • Méchaly I.
        • Aptel H.
        • Puech S.
        • Valmier J.
        • Bancel F.
        • et al.
        Rapid inhibition of Ca2+ influx by neurosteroids in murine embryonic sensory neurones.
        Cell Calcium. 2006; 40: 383-391
        • Barbagallo M.
        • Dominguez L.J.
        • Licata G.
        • Shan J.
        • Bing L.
        • Karpinski E.
        • et al.
        Vascular effects of progesterone: role of cellular calcium regulation.
        Hypertension. 2001; 37: 142-147
        • Bashour N.M.
        • Wray S.
        Progesterone directly and rapidly inhibits GnRH neuronal activity via progesterone receptor membrane component 1.
        Endocrinology. 2012; 153: 4457-4469
        • Peluso J.J.
        • Pappalardo A.
        • Fernandez G.
        • Wu C.A.
        Involvement of an unnamed protein, RDA288, in the mechanism through which progesterone mediates its antiapoptotic action in spontaneously immortalized granulosa cells.
        Endocrinology. 2004; 145: 3014-3022
        • Mansouri M.R.
        • Schuster J.
        • Badhai J.
        • Stattin E.L.
        • Lösel R.
        • Wehling M.
        • et al.
        Alterations in the expression, structure and function of progesterone receptor membrane component-1 (PGRMC1) in premature ovarian failure.
        Hum Mol Genet. 2008; 17: 3776-3783
        • Peluso J.J.
        • DeCerbo J.
        • Lodde V.
        Evidence for a genomic mechanism of action for progesterone receptor membrane component-1.
        Steroids. 2012; 77: 1007-1012
        • Crudden G.
        • Loesel R.
        • Craven R.
        Overexpression of the cytochrome p450 activator hpr6 (heme-1 domain protein/human progesterone receptor) in tumors.
        Tumour Biol. 2005; 26: 142-146
        • Oda S.
        • Nakajima M.
        • Toyoda Y.
        • Fukami T.
        • Yokoi T.
        Progesterone receptor membrane component 1 modulates human cytochrome P450 activities in an isoform-dependent manner.
        Drug Metab Dispos. 2011; 39: 2057-2065
        • Szczesna-skorupa E.
        • Kemper B.
        Progesterone receptor membrane component 1 inhibits the activity of drug-metabolizing cytochromes P450 and binds to cytochrome P450 reductase.
        Mol Pharmacol. 2011; 79: 340-350
        • Keator C.S.
        • Mah K.
        • Slayden O.D.
        Alterations in progesterone receptor membrane component 2 (PGRMC2) in the endometrium of macaques afflicted with advanced endometriosis.
        Mol Hum Reprod. 2012; 18: 308-319
        • McCallum M.L.
        • Pru C.A.
        • Niikura Y.
        • Yee S.P.
        • Lydon J.P.
        • Peluso J.J.
        • et al.
        Conditional ablation of progesterone receptor membrane component 1 results in subfertility in the female and development of endometrial cysts.
        Endocrinology. 2016; 157: 3309-3319
        • Nousiainen M.
        • Silljé H.H.W.
        • Sauer G.
        • Nigg E.A.
        • Körner R.
        Phosphoproteome analysis of the human mitotic spindle.
        Proc Natl Acad Sci USA. 2006; 103: 5391-5396
        • Peluso J.J.
        Expression and function of PAIRBP1 within gonadotropin-primed immature rat ovaries: PAIRBP1 regulation of granulosa and luteal cell viability.
        Biol Reprod. 2005; 73: 261-270