Advertisement

Before the beginning: environmental exposures and reproductive and obstetrical outcomes

      There is growing consensus that preconception exposure to environmental toxins can adversely affect fertility, pregnancy, and fetal development, which may persist into the neonatal and adult periods and potentially have multigenerational effects. Here we review current data on preconception and prenatal exposure to several chemicals, including heavy metals, endocrine-disrupting chemicals, pesticides, and air pollution, and their associated obstetrical and reproductive health effects. Reproductive endocrinologists and affiliated health care providers have a unique opportunity to counsel patients before they get pregnant to minimize exposure to hazardous chemicals with the goal to improve reproductive outcomes and assure a healthy lifestyle overall. We provide practical tools and some publicly available resources for reproductive health professionals to assess a patient's risks and ways to reduce chemical and air pollution exposures during the critical preconception and prenatal periods.

      Key Words

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Fertility and Sterility
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Unites States Environmental Protection Agency
        The Toxic Substance Chemical Act chemical substance inventory.
        (Available at:)
        www.epa.gov/tsca-inventory
        Date accessed: May 20, 2019
        • Woodruff T.J.
        • Zota A.R.
        • Schwartz J.M.
        Environmental chemicals in pregnant women in the United States: NHANES 2003–2004.
        Environ Health Perspect. 2011; 119: 878-885
        • World Health Organisation Regional Office for Europe
        Noncommunicable diseases and air pollution.
        (Available at:)
        • Guidice L.
        • Woodruff T.
        • Conry J.
        Reproductive and developmental environmental health.
        Obstet Gynecol Reprod Med. 2017; 27: 99-101
        • Barker D.J.
        The fetal and infant origins of adult disease.
        BMJ. 1990; 301: 1111
        • Barker D.J.
        The effect of nutrition of the fetus and neonate on cardiovascular disease in adult life.
        Proc Nutr Soc. 1992; 51: 135-144
        • Barker D.J.
        • Osmond C.
        • Golding J.
        • Kuh D.
        • Wadsworth M.E.
        Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease.
        BMJ. 1989; 298: 564-567
        • Ravelli G.P.
        • Stein Z.A.
        • Susser M.W.
        Obesity in young men after famine exposure in utero and early infancy.
        N Engl J Med. 1976; 295: 349-353
        • di Renzo G.C.
        • Conry J.A.
        • Blake J.
        • DeFrancesco M.S.
        • DeNicola N.
        • Martin J.N.
        • et al.
        International Federation of Gynecology and Obstetrics opinion on reproductive health impacts of exposure to toxic environmental chemicals.
        Int J Gynaecol Obstet. 2015; 131: 219-225
        • American College of Obstetricians and Gynecologists
        Committee opinion no. 575: exposure to toxic environmental agents.
        Obstet Gynecol. 2013; 122: 931-935
        • Calafat A.M.
        • Ye X.
        • Wong L.Y.
        • Reidy J.A.
        • Needham L.L.
        Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003–2004.
        Environ Health Perspect. 2008; 116: 39-44
        • Rice K.M.
        • Walker E.M.
        • Wu M.
        • Gillette C.
        • Blough E.R.
        Environmental mercury and its toxic effects.
        J Prev Med Public Health. 2014; 47: 74-83
        • Harada M.
        Minamata disease: methylmercury poisoning in Japan caused by environmental pollution.
        Crit Rev Toxicol. 1995; 25: 1-24
        • Kondo K.
        Congenital Minamata disease: warnings from Japan’s experience.
        J Child Neurol. 2000; 15: 458-464
        • Debes F.
        • Budtz-Jørgensen E.
        • Weihe P.
        • White R.F.
        • Grandjean P.
        Impact of prenatal methylmercury exposure on neurobehavioral function at age 14 years.
        Neurotoxicol Teratol. 2006; 28: 363-375
        • Grandjean P.
        • Weihe P.
        • White R.F.
        • Debes F.
        • Araki S.
        • Yokoyama K.
        • et al.
        Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury.
        Neurotoxicol Teratol. 1997; 19: 417-428
        • Stern A.H.
        • Smith A.E.
        An assessment of the cord blood:maternal blood methylmercury ratio: implications for risk assessment.
        Environ Health Perspect. 2003; 111: 1465-1470
        • Spanier A.J.
        • Wilson S.
        • Ho M.
        • Hornung R.
        • Lanphear B.P.
        The contribution of housing renovation to children's blood lead levels: a cohort study.
        Environ Health. 2013; 12: 72
        • Council on Environmental Health
        Prevention of childhood lead toxicity.
        Pediatrics. 2016; 138: e20161493
        • United States Food and Drug Administration; Environmental Protection Agency
        Advice about eating fish, what pregnant women & parents should know.
        (Available at:)
        • Bellinger D.C.
        Teratogen update: lead and pregnancy.
        Birth Defects Res A Clin Mol Teratol. 2005; 73: 409-420
        • Pilsner J.R.
        • Hu H.
        • Ettinger A.
        • Sánchez B.N.
        • Wright R.O.
        • Cantonwine D.
        • et al.
        Influence of prenatal lead exposure on genomic methylation of cord blood DNA.
        Environ Health Perspect. 2009; 117: 1466-1471
        • Schnaas L.
        • Rothenberg S.J.
        • Flores M.F.
        • Martinez S.
        • Hernandez C.
        • Osorio E.
        • et al.
        Reduced intellectual development in children with prenatal lead exposure.
        Environ Health Perspect. 2006; 114: 791-797
        • Olsson I.M.
        • Bensryd I.
        • Lundh T.
        • Ottosson H.
        • Skerfving S.
        • Oskarsson A.
        Cadmium in blood and urine—impact of sex, age, dietary intake, iron status, and former smoking—association of renal effects.
        Environ Health Perspect. 2002; 110: 1185-1190
        • Järup L.
        • Berglund M.
        • Elinder C.G.
        • Nordberg G.
        • Vahter M.
        Health effects of cadmium exposure—a review of the literature and a risk estimate.
        Scand J Work Environ Health. 1998; 24: 1-51
        • Nordberg G.F.
        Cadmium and health in the 21st century—historical remarks and trends for the future.
        Biometals. 2004; 17: 485-489
        • Aoshima K.
        Itai-itai disease: lessons from the investigations of environmental epidemiology conducted in the 1970's, with special reference to the studies of the Toyama Institute of Health.
        Nihon Eiseigaku Zasshi. 2017; 72: 149-158
        • Ikeda M.
        • Zhang Z.W.
        • Shimbo S.
        • Watanabe T.
        • Nakatsuka H.
        • Moon C.S.
        • et al.
        Urban population exposure to lead and cadmium in east and south-east Asia.
        Sci Total Environ. 2000; 249: 373-384
        • Watanabe K.
        • Kobayashi E.
        • Suwazono Y.
        • Okubo Y.
        • Kido T.
        • Nogawa K.
        Tolerable lifetime cadmium intake calculated from the inhabitants living in the Jinzu River basin, Japan.
        Bull Environ Contam Toxicol. 2004; 72: 1091-1097
        • Nishijo M.
        • Nakagawa H.
        • Honda R.
        • Tanebe K.
        • Saito S.
        • Teranishi H.
        • et al.
        Effects of maternal exposure to cadmium on pregnancy outcome and breast milk.
        Occup Environ Med. 2002; 59 (discussion 397): 394-396
        • Bernhoft R.A.
        Cadmium toxicity and treatment.
        ScientificWorldJournal. 2013; 2013: 394652
        • Järup L.
        • Akesson A.
        Current status of cadmium as an environmental health problem.
        Toxicol Appl Pharmacol. 2009; 238: 201-208
        • Nishijo M.
        • Satarug S.
        • Honda R.
        • Tsuritani I.
        • Aoshima K.
        The gender differences in health effects of environmental cadmium exposure and potential mechanisms.
        Mol Cell Biochem. 2004; 255: 87-92
        • Satarug S.
        • Moore M.R.
        Adverse health effects of chronic exposure to low-level cadmium in foodstuffs and cigarette smoke.
        Environ Health Perspect. 2004; 112: 1099-1103
        • Wier P.J.
        • Miller R.K.
        • Maulik D.
        • DiSant’Agnese P.A.
        Toxicity of cadmium in the perfused human placenta.
        Toxicol Appl Pharmacol. 1990; 105: 156-171
        • Piasek M.
        • Blanusa M.
        • Kostial K.
        • Laskey J.W.
        Placental cadmium and progesterone concentrations in cigarette smokers.
        Reprod Toxicol. 2001; 15: 673-681
        • Staessen J.A.
        • Roels H.A.
        • Emelianov D.
        • Kuznetsova T.
        • Thijs L.
        • Vangronsveld J.
        • et al.
        Public Health and Environmental Exposure to Cadmium (PheeCad) Study Group. Environmental exposure to cadmium, forearm bone density, and risk of fractures: prospective population study.
        Lancet. 1999; 353: 1140-1144
        • Bloom M.S.
        • Parsons P.J.
        • Steuerwald A.J.
        • Schisterman E.F.
        • Browne R.W.
        • Kim K.
        • et al.
        Toxic trace metals and human oocytes during in vitro fertilization (IVF).
        Reprod Toxicol. 2010; 29: 298-305
        • Bloom M.S.
        • Fujimoto V.Y.
        • Steuerwald A.J.
        • Cheng G.
        • Browne R.W.
        • Parsons P.J.
        Background exposure to toxic metals in women adversely influences pregnancy during in vitro fertilization (IVF).
        Reprod Toxicol. 2012; 34: 471-481
        • Gardner R.M.
        • Kippler M.
        • Tofail F.
        • Bottai M.
        • Hamadani J.
        • Grandér M.
        • et al.
        Environmental exposure to metals and children's growth to age 5 years: a prospective cohort study.
        Am J Epidemiol. 2013; 177: 1356-1367
        • Kippler M.
        • Tofail F.
        • Gardner R.
        • Rahman A.
        • Hamadani J.D.
        • Bottai M.
        • et al.
        Maternal cadmium exposure during pregnancy and size at birth: a prospective cohort study.
        Environ Health Perspect. 2012; 120: 284-289
        • Kippler M.
        • Wagatsuma Y.
        • Rahman A.
        • Nermell B.
        • Persson L.
        • Raqib R.
        • et al.
        Environmental exposure to arsenic and cadmium during pregnancy and fetal size: a longitudinal study in rural Bangladesh.
        Reprod Toxicol. 2012; 34: 504-511
        • Lin C.M.
        • Doyle P.
        • Wang D.
        • Hwang Y.H.
        • Chen P.C.
        Does prenatal cadmium exposure affect fetal and child growth?.
        Occup Environ Med. 2011; 68: 641-646
        • Salpietro C.D.
        • Gangemi S.
        • Minciullo P.L.
        • Briuglia S.
        • Merlino M.V.
        • Stelitano A.
        • et al.
        Cadmium concentration in maternal and cord blood and infant birth weight: a study on healthy nonsmoking women.
        J Perinat Med. 2002; 30: 395-399
        • Kippler M.
        • Engström K.
        • Mlakar S.J.
        • Bottai M.
        • Ahmed S.
        • Hossain M.B.
        • et al.
        Sex-specific effects of early life cadmium exposure on DNA methylation and implications for birth weight.
        Epigenetics. 2013; 8: 494-503
        • Vilahur N.
        • Vahter M.
        • Broberg K.
        The epigenetic effects of prenatal cadmium exposure.
        Curr Environ Health Rep. 2015; 2: 195-203
        • Boeke C.E.
        • Baccarelli A.
        • Kleinman K.P.
        • Burris H.H.
        • Litonjua A.A.
        • Rifas-Shiman S.L.
        • et al.
        Gestational intake of methyl donors and global LINE-1 DNA methylation in maternal and cord blood: prospective results from a folate-replete population.
        Epigenetics. 2012; 7: 253-260
        • Sanders A.P.
        • Smeester L.
        • Rojas D.
        • DeBussycher T.
        • Wu M.C.
        • Wright F.A.
        • et al.
        Cadmium exposure and the epigenome: exposure-associated patterns of DNA methylation in leukocytes from mother-baby pairs.
        Epigenetics. 2014; 9: 212-221
        • Kumar S.
        • Sharma A.
        Cadmium toxicity: effects on human reproduction and fertility.
        Rev Environ Health. 2019; https://doi.org/10.1515/reveh-2019-0016
        • Pizent A.
        • Tariba B.
        • Živković T.
        Reproductive toxicity of metals in men.
        Arh Hig Rada Toksikol. 2012; 63: 35-46
        • Thompson J.
        • Bannigan J.
        Cadmium: toxic effects on the reproductive system and the embryo.
        Reprod Toxicol. 2008; 25: 304-315
        • Sioen I.
        • Den Hond E.
        • Nelen V.
        • Van de Mieroop E.
        • Croes K.
        • van Larebeke N.
        • et al.
        Prenatal exposure to environmental contaminants and behavioural problems at age 7–8 years.
        Environ Int. 2013; 59: 225-231
        • Centers for Disease Control and Prevention
        Guidelines for the identification and management of lead expsoure in pregnant and lactating women.
        (Available at:)
        • Centers for Disease Control and Prevention
        Fourth national report in human exposure to environmental chemicals, updated tables.
        (Available at:)
        • United States Environmental Protection Agency
        Pesticides industry sales and usage 2006 and 2007 market estimates.
        (Available at:)
        • Whyatt R.M.
        • Rauh V.
        • Barr D.B.
        • Camann D.E.
        • Andrews H.F.
        • Garfinkel R.
        • et al.
        Prenatal insecticide exposures and birth weight and length among an urban minority cohort.
        Environ Health Perspect. 2004; 112: 1125-1132
        • Rauh V.
        • Arunajadai S.
        • Horton M.
        • Perera F.
        • Hoepner L.
        • Barr D.B.
        • et al.
        Seven-year neurodevelopmental scores and prenatal exposure to chlorpyrifos, a common agricultural pesticide.
        Environ Health Perspect. 2011; 119: 1196-1201
        • Turner M.C.
        • Wigle D.T.
        • Krewski D.
        Residential pesticides and childhood leukemia: a systematic review and meta-analysis.
        Environ Health Perspect. 2010; 118: 33-41
        • van Maele–Fabry G.
        • Hoet P.
        • Lison D.
        Parental occupational exposure to pesticides as risk factor for brain tumors in children and young adults: a systematic review and meta-analysis.
        Environ Int. 2013; 56: 19-31
        • Cohn B.A.
        • Cirillo P.M.
        • Christianson R.E.
        Prenatal DDT exposure and testicular cancer: a nested case-control study.
        Arch Environ Occup Health. 2010; 65: 127-134
        • Chiu Y.H.
        • Williams P.L.
        • Gillman M.W.
        • Gaskins A.J.
        • Mínguez-Alarcón L.
        • Souter I.
        • et al.
        Association between pesticide residue intake from consumption of fruits and vegetables and pregnancy outcomes among women undergoing infertility treatment with assisted reproductive technology.
        JAMA Intern Med. 2018; 178: 17-26
        • van Wijngaarden E.
        • Stewart P.A.
        • Olshan A.F.
        • Savitz D.A.
        • Bunin G.R.
        Parental occupational exposure to pesticides and childhood brain cancer.
        Am J Epidemiol. 2003; 157: 989-997
        • Braun J.M.
        • Messerlian C.
        • Hauser R.
        Fathers Matter: Why it's time to consider the impact of paternal environmental exposures on children’s health.
        Curr Epidemiol Rep. 2017; 4: 46-55
        • Silva M.J.
        • Barr D.B.
        • Reidy J.A.
        • Malek N.A.
        • Hodge C.C.
        • Caudill S.P.
        • et al.
        Urinary levels of seven phthalate metabolites in the U.S. population from the National Health and Nutrition Examination Survey (NHANES) 1999–2000.
        Environ Health Perspect. 2004; 112: 331-338
        • Lakind J.S.
        • Naiman D.Q.
        Daily intake of bisphenol A and potential sources of exposure: 2005–2006 National Health and Nutrition Examination Survey.
        J Expo Sci Environ Epidemiol. 2011; 21: 272-279
        • Rudel R.A.
        • Gray J.M.
        • Engel C.L.
        • Rawsthorne T.W.
        • Dodson R.E.
        • Ackerman J.M.
        • et al.
        Food packaging and bisphenol A and bis(2-ethyhexyl) phthalate exposure: findings from a dietary intervention.
        Environ Health Perspect. 2011; 119: 914-920
        • Vandenberg L.N.
        • Hauser R.
        • Marcus M.
        • Olea N.
        • Welshons W.V.
        Human exposure to bisphenol A (BPA).
        Reprod Toxicol. 2007; 24: 139-177
        • Susiarjo M.
        • Sasson I.
        • Mesaros C.
        • Bartolomei M.S.
        Bisphenol A exposure disrupts genomic imprinting in the mouse.
        PLoS Genet. 2013; 9: e1003401
        • Ehrlich S.
        • Williams P.L.
        • Missmer S.A.
        • Flaws J.A.
        • Berry K.F.
        • Calafat A.M.
        • et al.
        Urinary bisphenol A concentrations and implantation failure among women undergoing in vitro fertilization.
        Environ Health Perspect. 2012; 120: 978-983
        • Ziv-Gal A.
        • Flaws J.A.
        Evidence for bisphenol A–induced female infertility: a review (2007–2016).
        Fertil Steril. 2016; 106: 827-856
        • Hunt P.A.
        • Koehler K.E.
        • Susiarjo M.
        • Hodges C.A.
        • Ilagan A.
        • Voigt R.C.
        • et al.
        Bisphenol a exposure causes meiotic aneuploidy in the female mouse.
        Curr Biol. 2003; 13: 546-553
        • Lenie S.
        • Cortvrindt R.
        • Eichenlaub-Ritter U.
        • Smitz J.
        Continuous exposure to bisphenol A during in vitro follicular development induces meiotic abnormalities.
        Mutat Res. 2008; 651: 71-81
        • Sugiura-Ogasawara M.
        • Ozaki Y.
        • Sonta S.
        • Makino T.
        • Suzumori K.
        Exposure to bisphenol A is associated with recurrent miscarriage.
        Hum Reprod. 2005; 20: 2325-2329
        • Mok-Lin E.
        • Ehrlich S.
        • Williams P.L.
        • Petrozza J.
        • Wright D.L.
        • Calafat A.M.
        • et al.
        Urinary bisphenol A concentrations and ovarian response among women undergoing IVF.
        Int J Androl. 2010; 33: 385-393
        • Mustieles V.
        • Williams P.L.
        • Fernandez M.F.
        • Mínguez-Alarcón L.
        • Ford J.B.
        • Calafat A.M.
        • et al.
        Maternal and paternal preconception exposure to bisphenols and size at birth.
        Hum Reprod. 2018; https://doi.org/10.1093/humrep/dey234
        • Balakrishnan B.
        • Henare K.
        • Thorstensen E.B.
        • Ponnampalam A.P.
        • Mitchell M.D.
        Transfer of bisphenol A across the human placenta.
        Am J Obstet Gynecol. 2010; 202: 393.e1-393.e7
        • Rochester J.R.
        • Bolden A.L.
        Bisphenol S and F: a systematic review and comparison of the hormonal activity of bisphenol A substitutes.
        Environ Health Perspect. 2015; 123: 643-650
        • Strakovsky R.S.
        • Schantz S.L.
        Impacts of bisphenol A (BPA) and phthalate exposures on epigenetic outcomes in the human placenta.
        Environ Epigenet. 2018; 4: dvy022
        • Bernier M.R.
        • Vandenberg L.N.
        Handling of thermal paper: Implications for dermal exposure to bisphenol A and its alternatives.
        PLoS One. 2017; 12: e0178449
        • Timms B.G.
        • Howdeshell K.L.
        • Barton L.
        • Bradley S.
        • Richter C.A.
        • vom Saal F.S.
        Estrogenic chemicals in plastic and oral contraceptives disrupt development of the fetal mouse prostate and urethra.
        Proc Natl Acad Sci U S A. 2005; 102: 7014-7019
        • Cariati F.
        • d’Uonno N.
        • Borrillo F.
        • Iervolino S.
        • Galdiero G.
        • Tomaiuolo R.
        Bisphenol A: an emerging threat to male fertility.
        Reprod Biol Endocrinol. 2019; 17: 6
        • Sathyanarayana S.
        Phthalates and children’s health.
        Curr Probl Pediatr Adolesc Health Care. 2008; 38: 34-49
        • Varshavsky J.R.
        • Morello-Frosch R.
        • Woodruff T.J.
        • Zota A.R.
        Dietary sources of cumulative phthalates exposure among the U.S. general population in NHANES 2005–2014.
        Environ Int. 2018; 115: 417-429
        • Parlett L.E.
        • Calafat A.M.
        • Swan S.H.
        Women’s exposure to phthalates in relation to use of personal care products.
        J Expo Sci Environ Epidemiol. 2013; 23: 197-206
        • Cobellis L.
        • Latini G.
        • De Felice C.
        • Razzi S.
        • Paris I.
        • Ruggieri F.
        • et al.
        High plasma concentrations of di-(2-ethylhexyl)-phthalate in women with endometriosis.
        Hum Reprod. 2003; 18: 1512-1515
        • Latini G.
        • de Felice C.
        • Presta G.
        • del Vecchio A.
        • Paris I.
        • Ruggieri F.
        • et al.
        In utero exposure to di-(2-ethylhexyl)phthalate and duration of human pregnancy.
        Environ Health Perspect. 2003; 111: 1783-1785
        • Swan S.H.
        • Sathyanarayana S.
        • Barrett E.S.
        • Janssen S.
        • Liu F.
        • Nguyen R.H.
        • et al.
        First trimester phthalate exposure and anogenital distance in newborns.
        Hum Reprod. 2015; 30: 963-972
        • Zarean M.
        • Keikha M.
        • Feizi A.
        • Kazemitabaee M.
        • Kelishadi R.
        The role of exposure to phthalates in variations of anogenital distance: a systematic review and meta-analysis.
        Environ Pollut. 2019; 247: 172-179
        • Messerlian C.
        • Wylie B.J.
        • Mínguez-Alarcón L.
        • Williams P.L.
        • Ford J.B.
        • Souter I.C.
        • et al.
        Urinary concentrations of phthalate metabolites and pregnancy loss among women conceiving with medically assisted reproduction.
        Epidemiology. 2016; 27: 879-888
        • Duty S.M.
        • Singh N.P.
        • Silva M.J.
        • Barr D.B.
        • Brock J.W.
        • Ryan L.
        • et al.
        The relationship between environmental exposures to phthalates and DNA damage in human sperm using the neutral comet assay.
        Environ Health Perspect. 2003; 111: 1164-1169
        • Messerlian C.
        • Braun J.M.
        • Mínguez-Alarcón L.
        • Williams P.L.
        • Ford J.B.
        • Mustieles V.
        • et al.
        Paternal and maternal urinary phthalate metabolite concentrations and birth weight of singletons conceived by subfertile couples.
        Environ Int. 2017; 107: 55-64
        • Hauser R.
        • Meeker J.D.
        • Duty S.
        • Silva M.J.
        • Calafat A.M.
        Altered semen quality in relation to urinary concentrations of phthalate monoester and oxidative metabolites.
        Epidemiology. 2006; 17: 682-691
        • Buck Louis G.M.
        • Sundaram R.
        • Sweeney A.M.
        • Schisterman E.F.
        • Maisog J.
        • Kannan K.
        Urinary bisphenol A, phthalates, and couple fecundity: the Longitudinal Investigation of Fertility and the Environment (LIFE) study.
        Fertil Steril. 2014; 101: 1359-1366
        • Lomenick J.P.
        • Calafat A.M.
        • Melguizo Castro M.S.
        • Mier R.
        • Stenger P.
        • Foster M.B.
        • et al.
        Phthalate exposure and precocious puberty in females.
        J Pediatr. 2010; 156: 221-225
        • Gray L.E.
        • Ostby J.
        • Furr J.
        • Price M.
        • Veeramachaneni D.N.
        • Parks L.
        Perinatal exposure to the phthalates DEHP, BBP, and DINP, but not DEP, DMP, or DOTP, alters sexual differentiation of the male rat.
        Toxicol Sci. 2000; 58: 350-365
        • Geyer H.J.
        • Schramm K.-W.
        • Darnerud P.O.
        • Aune M.
        • Feicht E.A.
        • Fried K.W.
        • et al.
        Terminal elimination half-lives of the brominated flame retardants TBBPA, HBCD, and lower brominated PBDEs in humans.
        Organohalogen Compounds. 2004; 66: 3867-3872
        • Frederiksen M.
        • Vorkamp K.
        • Thomsen M.
        • Knudsen L.E.
        Human internal and external exposure to PBDEs—a review of levels and sources.
        Int J Hyg Environ Health. 2009; 212: 109-134
        • Chen A.
        • Park J.S.
        • Linderholm L.
        • Rhee A.
        • Petreas M.
        • DeFranco E.A.
        • et al.
        Hydroxylated polybrominated diphenyl ethers in paired maternal and cord sera.
        Environ Sci Technol. 2013; 47: 3902-3908
        • Wu K.
        • Xu X.
        • Liu J.
        • Guo Y.
        • Li Y.
        • Huo X.
        Polybrominated diphenyl ethers in umbilical cord blood and relevant factors in neonates from Guiyu, China.
        Environ Sci Technol. 2010; 44: 813-819
        • Zota A.R.
        • Park J.S.
        • Wang Y.
        • Petreas M.
        • Zoeller R.T.
        • Woodruff T.J.
        Polybrominated diphenyl ethers, hydroxylated polybrominated diphenyl ethers, and measures of thyroid function in second trimester pregnant women in California.
        Environ Sci Technol. 2011; 45: 7896-7905
        • Stapleton H.M.
        • Eagle S.
        • Anthopolos R.
        • Wolkin A.
        • Miranda M.L.
        Associations between polybrominated diphenyl ether (PBDE) flame retardants, phenolic metabolites, and thyroid hormones during pregnancy.
        Environ Health Perspect. 2011; 119: 1454-1459
        • Choi G.
        • Wang Y.B.
        • Sundaram R.
        • Chen Z.
        • Barr D.B.
        • Buck Louis G.M.
        • et al.
        Polybrominated diphenyl ethers and incident pregnancy loss: The LIFE study.
        Environ Res. 2019; 168: 375-381
        • Lam J.
        • Lanphear B.P.
        • Bellinger D.
        • Axelrad D.A.
        • McPartland J.
        • Sutton P.
        • et al.
        Developmental PBDE exposure and IQ/ADHD in childhood: a systematic review and meta-analysis.
        Environ Health Perspect. 2017; 125: 086001
        • Ha S.
        • Sundaram R.
        • Buck Louis G.M.
        • Nobles C.
        • Seeni I.
        • Sherman S.
        • et al.
        Ambient air pollution and the risk of pregnancy loss: a prospective cohort study.
        Fertil Steril. 2018; 109: 148-153
        • Leiser C.L.
        • Hanson H.A.
        • Sawyer K.
        • Steenblik J.
        • Al-Dulaimi R.
        • Madsen T.
        • et al.
        Acute effects of air pollutants on spontaneous pregnancy loss: a case-crossover study.
        Fertil Steril. 2019; 111: 341-347
        • Jacobs M.
        • Zhang G.
        • Chen S.
        • Mullins B.
        • Bell M.
        • Jin L.
        • et al.
        The association between ambient air pollution and selected adverse pregnancy outcomes in China: a systematic review.
        Sci Total Environ. 2017; 579: 1179-1192
        • Padula A.M.
        • Mortimer K.M.
        • Tager I.B.
        • Hammond S.K.
        • Lurmann F.W.
        • Yang W.
        • et al.
        Traffic-related air pollution and risk of preterm birth in the San Joaquin Valley of California.
        Ann Epidemiol. 2014; 24: 888-895.e4
        • Lamichhane D.K.
        • Leem J.H.
        • Lee J.Y.
        • Kim H.C.
        A meta-analysis of exposure to particulate matter and adverse birth outcomes.
        Environ Health Toxicol. 2015; 30: e2015011
        • Yang S.
        • Tan Y.
        • Mei H.
        • Wang F.
        • Li N.
        • Zhao J.
        • et al.
        Ambient air pollution the risk of stillbirth: a prospective birth cohort study in Wuhan, China.
        Int J Hyg Environ Health. 2018; 221: 502-509
        • Lee P.C.
        • Roberts J.M.
        • Catov J.M.
        • Talbott E.O.
        • Ritz B.
        First trimester exposure to ambient air pollution, pregnancy complications and adverse birth outcomes in Allegheny County, PA.
        Matern Child Health J. 2013; 17: 545-555
        • Edwards S.C.
        • Jedrychowski W.
        • Butscher M.
        • Camann D.
        • Kieltyka A.
        • Mroz E.
        • et al.
        Prenatal exposure to airborne polycyclic aromatic hydrocarbons and children’s intelligence at 5 years of age in a prospective cohort study in Poland.
        Environ Health Perspect. 2010; 118: 1326-1331
        • Suglia S.F.
        • Gryparis A.
        • Wright R.O.
        • Schwartz J.
        • Wright R.J.
        Association of black carbon with cognition among children in a prospective birth cohort study.
        Am J Epidemiol. 2008; 167: 280-286
        • Minichiello L.
        TrkB signalling pathways in LTP and learning.
        Nat Rev Neurosci. 2009; 10: 850-860
        • Saenen N.D.
        • Plusquin M.
        • Bijnens E.
        • Janssen B.G.
        • Gyselaers W.
        • Cox B.
        • et al.
        In utero fine particle air pollution and placental expression of genes in the brain-derived neurotrophic factor signaling pathway: an ENVIRONAGE birth cohort study.
        Environ Health Perspect. 2015; 123: 834-840
        • Carré J.
        • Gatimel N.
        • Moreau J.
        • Parinaud J.
        • Léandri R.
        Does air pollution play a role in infertility? A systematic review.
        Environ Health. 2017; 16: 82
        • Friedman D.J.
        • Parrish R.G.
        • Ross D.A.
        Electronic health records and US public health: current realities and future promise.
        Am J Public Health. 2013; 103: 1560-1567
        • Lindqvist M.
        • Lindkvist M.
        • Eurenius E.
        • Persson M.
        • Mogren I.
        Change of lifestyle habits—motivation and ability reported by pregnant women in northern Sweden.
        Sex Reprod Healthc. 2017; 13: 83-90