Advertisement

Ethics in embryo research: a position statement by the ASRM Ethics in Embryo Research Task Force and the ASRM Ethics Committee

      Scientific research using human embryos advances human health and offspring well-being and provides vital insights into the mechanisms for reproduction and disease. Research involving human embryos is ethically acceptable if it is likely to provide significant new knowledge that may benefit human health, well-being of the offspring, or reproduction.
      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Fertility and Sterility
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Reindollar R.H.
        Surfing the waves of change in reproductive medicine: past, present and future. A presentation of the 2014 ASRM Strategic Plan.
        Fertil Steril. 2015; 103: 35-38
        • American Society for Reproductive Médicine
        ASRM Strategic Research Blueprint.
        (Accessible at:)
        • Zegers-Hochschild F.
        • Adamson G.D.
        • Dyer S.
        • Racowsky C.
        • de Mouzon J.
        • Sokol R.
        • et al.
        The International Glossary on Infertility and Fertility Care, 2017.
        Fertil Steril. 2017; 108: 393-406
      1. Davis v. Davis, 842 S.W.2d 588 (1992). Accessible at https://scholar.google.com/scholar_case?case=17302847389043812781&q=Davis+v.+Davis,+842+S.W.2d+588+(1992).&hl=en&as_sdt=206&as_vis=1, last accessed 12/20/19.

        • Ethics Committee of American Society for Reproductive Medicine
        Donating embryos for human embryonic stem cell (hESC) research: a committee opinion.
        Fertil Steril. 2013; 100: 935-939
      2. Public Law 114-113, Sec. 749.
        (Available at:)
        • President’s Council on Bioethics
        Monitoring Stem Cell Research, Jan. 2004.
        (Available at:)
        • The White House, President George W Bush, Office of the Press Secretary
        President Discusses Stem Cell Research, August 9, 2001.
        (Accessible at:) (last accessed 12/20/19)
      3. Executive Order 13505—Removing Barriers to Responsible Scientific Research Involving Human Stem Cells.
        (Accessible at:)
        • National Institutes of Health
        National Institutes of Health Guidelines for Human Stem Cell Research.
        (Available at:)
        • National Institutes of Health
        Statement on NIH funding of research using gene-editing technologies in human embryos.
        (Accessible at:)
        • National Institutes of Health (3)
        Statement on Claim of First Gene-Edited Babies by Chinese Researcher.
        (Available at:)
        • The National Conference of State Legislatures (NCSL)
        Embryonic and fetal research laws.
        (Available at:)
        • State of California
        Proposition 71: Stem Cell Research. Funding. Bonds. Initiative Constitutional Amendment and Statute.
        (Available at:)
        https://lao.ca.gov/ballot/2004/71_11_2004.htm
        Date accessed: October 3, 2019
        • National Institutes of Health
        State Initiatives for Stem Cell Research.
        (Available at:)
        • Liang P.
        • Ding C.
        • Sun H.
        • Xie X.
        • Xu Y.
        • Zhang X.
        • et al.
        Correction of beta-thalassemia mutant by base editor in human embryos.
        Protein Cell. 2017; 8: 811-822
        • Ma H.
        • Marti-Gutierrez N.
        • Park S.W.
        • Wu J.
        • Lee Y.
        • Suzuki K.
        • et al.
        Correction of a pathogenic gene mutation in human embryos.
        Nature. 2017; 548: 413-419
        • Gaynes R.
        The discovery of penicillin—new insights after more than 75 years of clinical use.
        Emerg Infect Dis. 2017; 23: 849-853
        • Quintin J.
        Organ transplantation and meaning of life: the quest for self fulfilment.
        Med Health Care Philos. 2012; 16: 565-574
        • Amato P.
        • Tachibana M.
        • Sparman M.
        • Mitalipov S.
        Three-parent in vitro fertilization: gene replacement for the prevention of inherited mitochondrial diseases.
        Fertil Steril. 2014; 101: 31-35
        • Xiong X.
        • Chen M.
        • Lim W.A.
        • Zhao D.
        • Qi L.S.
        CRISPR/Cas9 for human genome engineering and disease research.
        Annu Rev Genomics Hum Genet. 2016; 17: 131-154
        • Lomax G.P.
        • Trounson A.O.
        Correcting misperceptions about cryopreserved embryos and stem cell research.
        Nat Biotechnol. 2013; 31: 288-290
        • Williams S.M.
        • Haines J.L.
        • Moore J.H.
        The use of animal models in the study of complex disease: all else is never equal or why do so many human studies fail to replicate animal findings?.
        Bioessays. 2004; 26: 170-179
        • Kogler G.
        • Sensken S.
        • Airey J.A.
        • Trapp T.
        • Muschen M.
        • Feldhahn N.
        • et al.
        A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential.
        J Exp Med. 2004; 200: 123-135
        • Takahashi K.
        • Yamanaka S.
        Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.
        Cell. 2006; 126: 663-676
        • Spencer C.I.
        • Baba S.
        • Nakamura K.
        • Hua E.A.
        • Sears M.A.
        • Fu C.C.
        • et al.
        Calcium transients closely reflect prolonged action potentials in iPSC models of inherited cardiac arrhythmia.
        Stem Cell Reports. 2014; 3: 269-281
        • Israel M.A.
        • Yuan S.H.
        • Bardy C.
        • Reyna S.M.
        • Mu Y.
        • Herrera C.
        • al Het
        Probing sporadic and familial Alzheimer's disease using induced pluripotent stem cells.
        Nature. 2012; 482: 216-220
        • Polo J.M.
        • Liu S.
        • Figueroa M.E.
        • Kulalert W.
        • Eminli S.
        • Tan K.Y.
        • et al.
        Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells.
        Nat Biotechnol. 2010; 28: 848-855
        • Kang E.
        • Wang X.
        • Tippner-Hedges R.
        • Ma H.
        • Folmes C.D.
        • Gutierrez N.M.
        • et al.
        Age-Related Accumulation of Somatic Mitochondrial DNA Mutations in Adult-Derived Human iPSCs.
        Cell Stem Cell. 2016; 18: 625-636
        • Aach J.
        • Lunshof J.
        • Iyer E.
        • Church G.M.
        Addressing the ethical issues raised by synthetic human entities with embryo-like features.
        Elife. 2017; 6: e20674
        • Warmflash A.
        • Sorre B.
        • Etoc F.
        • Siggia E.D.
        • Brivanlou A.H.
        A method to recapitulate early embryonic spatial patterning in human embryonic stem cells.
        Nat Methods. 2014; 11: 847-854
        • Ormond K.E.
        • Mortlock D.P.
        • Scholes D.T.
        • Bombard Y.
        • Brody L.C.
        • Faucett A.
        • et al.
        Human germline genome editing.
        Am J Hum Genet. 2017; 101: 167-176
        • National Academy of Sciences
        Human genome editing: science, ethics, and governance.
        The National Academies Press, Washington, DC2017https://doi.org/10.17226/24623
        • National Academy of Sciences
        On Human Genome Editing II: Statement by the Organizing Committee of the Second International Summit on Human Genome Editing November 29.
        (Available at:)
        • Nuffield Council on Bioethics
        Genome editing and human reproduction.
        (Available at:)
        • Baltimore D.
        • Berg P.
        • Botchan M.
        • Carroll D.
        • Charo R.A.
        • Church G.
        • et al.
        Biotechnology. A prudent path forward for genomic engineering and germline gene modification.
        Science. 2015; 348: 36-38
        • Dzau V.J.
        • McNutt M.
        • Bai C.
        Wake-up call from Hong Kong.
        Science. 2018; 362: 1215
      4. Federal Policy for the Protection of Human Subjects. cfr45 CFR 46.
        (Available at)
        • US Food and Drug Administration
        Guidance and Other Information of Special Interest to MCM Stakeholders.
        (Available at:)
      5. National Conference of State Legislatures, Embryonic and Fetal Research Laws.
        (Available at:)
        • Ethics Committee of the American Society for Reproductive Medicine
        Disposition of abandoned embryos: a committee opinion.
        Fertil Steril. 2013; 99: 1848-1849
      6. US Department of Health & Human Services. 45 C.F.R. § 42.102. Available at https://www.hhs.gov/ohrp/regulations-and-policy/regulations/45-cfr-46/index.html, last accessed 12/20/19.

        • Office of Human Research Protections
        Revised common rule.
        (Accessible at:)
      7. Federal Policy for the Protection of Human Subjects; Final Rule, Federal Register 82, no. 12 at 7150 (Jan 19, 2017).
        (Accessible at:)
        • American Academy of Pediatrics
        Human embryonic stem cell (hESC) and human embryo research.
        (Available at:)
        • Institute of Medicine and National Research Council
        Final Report of the National Academies' Human Embryonic Stem Cell Research Advisory Committee and 2010 Amendments to the National Academies' Guidelines for Human Embryonic Stem Cell Research.
        The National Academies Press, Washington, DC2010https://doi.org/10.17226/12923
        • Ethics Committee of the American Society for Reproductive Medicine
        Financial compensation of oocyte donors: an Ethics Committee opinion.
        Fertil Steril. 2016; 106: e15-e19
      8. Moore v. Regents of the University of California, 51 Cal. 3d 120 (1990). Accessible at https://law.justia.com/cases/california/supreme-court/3d/51/120.html. Last accessed December 20, 2019.

        • Ethics Committee of American Society for Reproductive Medicine
        Informed consent and the use of gametes and embryos for research: a committee opinion.
        Fertil Steril. 2014; 101: 332-335
        • Lyerly A.D.
        • Faden R.R.
        Embryonic stem cells. Willingness to donate frozen embryos for stem cell research.
        Science. 2007; 317: 46-47
        • Dillon K.E.
        • Fiester A.M.
        Sperm and oocyte cryopreservation: comprehensive consent and the protection of patient autonomy.
        Hum Reprod. 2012; 27: 2894-2898
        • Harvard TH Chan School of Public Health
        The public and genetic editing, testing, and therapy.
        (Available at:)
        • Pew Research Center
        Public U.S. public opinion on the future use of gene editing.
        (Available at:)
        • Hart Research Associates
        Public attitudes regarding new technology for editing DNA.
        (Available at:)
        • Gallup
        Stem Cell Research.
        (Available at:)
        • Edwards R.G.
        • Donahue R.P.
        • Baramki T.A.
        • Jones Jr., H.W.
        Preliminary attempts to fertilize human oocytes matured in vitro.
        Am J Obstet Gynecol. 1966; 15: 192-200
        • Steptoe P.C.
        • Edwards R.G.
        Birth after the reimplantation of a human embryo.
        Lancet. 1978; 2: 366
        • European Society of Human Reproduction and Embryology
        More than 8 million babies born from IVF sincCe the world's first in 1978. Science Daily, 7/3/2018.
        (Available at:) (Last accessed May 23, 2019)
        • Johnson M.H.
        • Franklin S.B.
        • Cottingham M.
        • Hopwood N.
        Why the Medical Research Council refused Robert Edwards and Patrick Steptoe support for research on human conception in 1971.
        Hum Reprod. 2010; 25: 2157-2174
        • New York Times
        (6/12/1981, page 00015. Available at:)
        • Culliton B.J.
        Ethics advisory board confronts conception in the test tube.
        Science. 1978 Oct 13; 202: 198-199
        • Ethics Advisory Board
        HEW support of research involving human in vitro fertilization and embryo transfer.
        (Available at:)
        • NIH Research Panel
        Report of the Human Embryo Research Panel.
        (Available at:)
        • Leary L.E.
        Clinton Rules Out Federal Money for Research on Human Embryos Created for That Purpose. New York Times December 3.
        1994 (Available at:)
      9. The Balanced Budget Downpayment Act, I, Pub L No 104-99; 128, 110 Stat.34 (1996). Available at https://www.congress.gov/104/plaws/publ99/PLAW-104publ99.pdf. Last accessed December 20, 2019.

        • National Bioethics Advisory Commission
        Ethical issues in human stem cell research.
        NBAC, Rockville, MD1999
        • 109th Congress (2005-2006)
        H.R.810 - Stem Cell Research Enhancement Act of 2005.
        (Available at:)
        • Wadman M.
        High court ensures continued US funding of human embryonic-stem-cell research.
        (Nature 1/7/13. Available at:)
        • Institute of Medicine
        Oversight and Review of Clinical Gene Transfer Protocols: Assessing the Role of the Recombinant DNA Advisory Committee.
        The National Academies Press, Washington, DC2014https://doi.org/10.17226/18577
        • Collins F.S.
        Statement on NIH funding of research using gene-editing technologies in human embryos.
        NIH, 2015 (Available at:) (Last accessed December 20, 2019)
        • National Institutes of Health
        Statement on modernizing human gene therapy oversight.
        (Available at:)
        • California Institute for Regenerative Medicine
        History.
        (Available at)
        https://www.cirm.ca.gov/about-cirm/history
        Date accessed: October 3, 2019
        • National Academy of Sciences and National Academy of Medicine
        Human genome editing: science, ethics, and governance.
        (Available at)
      10. Consolidated appropriations act of 2016, Public Law 114-114, adopted 12/18/15.
        (Available at:)
        • STAT
        STAT-Harvard poll: Americans say no to ‘designer babies’.
        (Available at:)
        • Pew Research Center
        Public views of gene editing for babies depend on how it would be used.
        (Available at:)
        • Gaskell G.
        • Bard I.
        • Allansdottir A.
        • da Cunha R.V.
        • Eduard P.
        • Hampel J.
        • et al.
        Public views on gene editing and its uses.
        Nat Biotechnol. 2017; 35: 1021-1023
        • AP-NORC
        Human genetic engineering.
        (Accessible at:)
        • Vassena R.
        • Heindryckx B.
        • Peco R.
        • Pennings G.
        • Raya A.
        • Sermon K.
        • et al.
        Genome engineering through CRISPR/Cas9 technology in the human germline and pluripotent stem cells.
        Hum Reprod Update. 2016; 22: 411-419
        • Liang P.
        • Xu Y.
        • Zhang X.
        • Ding C.
        • Huang R.
        • Zhang Z.
        • et al.
        CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes.
        Protein Cell. 2015; 6: 363-372
        • Kang X.
        • He W.
        • Huang Y.
        • Yu Q.
        • Chen Y.
        • Gao X.
        • et al.
        Introducing precise genetic modifications into human 3PN embryos by CRISPR/Cas-mediated genome editing.
        J Assist Reprod Genet. 2016; 33: 581-588
        • Thomson J.A.
        • Itskovitz-Eldor J.
        • Shapiro S.S.
        • Waknitz M.A.
        • Swiergiel J.J.
        • Marshall V.S.
        • et al.
        Embryonic stem cell lines derived from human blastocysts.
        Science. 1998; 282 (Erratum in: Science 1998;282:1827): 1145-1147
        • Lanzendorf S.E.
        • Boyd C.A.
        • Wright D.L.
        • Muasher S.
        • Oehninger S.
        • Hodgen G.D.
        Use of human gametes obtained from anonymous donors for the production of human embryonic stem cell lines.
        Fertil Steril. 2001; 76: 132-137
        • Hewitt Z.A.
        • Amps K.J.
        • Moore H.D.
        Derivation of GMP raw materials for use in regenerative medicine: hESC-based therapies, progress toward clinical application.
        Clin Pharmacol Ther. 2007; : 82448-82452
        • de Wert G.
        • Mummery C.
        Human embryonic stem cells: research, ethics and policy.
        Hum Reprod. 2003; 18: 672-682
        • Cyranoski D.
        Japanese woman is first recipient of next-generation stem cells.
        Nature. 12 September 2014; (Available at:)
        • Murry C.E.
        • Keller G.
        Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development.
        Cell. 2008; 132: 661-680
        • Tachibana M.
        • Amato P.
        • Sparman M.
        • Gutierrez N.M.
        • Tippner-Hedges R.
        • Ma H.
        • et al.
        Human embryonic stem cells derived by somatic cell nuclear transfer.
        Cell. 2013; 153: 1228-1238
        • Takahashi K.
        • Tanabe K.
        • Ohnuki M.
        • Narita M.
        • Ichisaka T.
        • Tomoda K.
        • et al.
        Induction of pluripotent stem cells from adult human fibroblasts by defined factors.
        Cell. 2007; 131: 861-872
        • Yu J.
        • Vodyanik M.A.
        • Smuga-Otto K.
        • Antosiewicz-Bourget J.
        • Frane J.L.
        • Tian S.
        • et al.
        Induced pluripotent stem cell lines derived from human somatic cells.
        Science. 2007; 318: 1917-1920
        • Vassena R.
        • Eguizabal C.
        • Heindryckx B.
        • Sermon K.
        • Simon C.
        • van Pelt A.M.
        • Veiga A.
        • et al.
        ESHRE special interest group Stem Cells. Stem cells in reproductive medicine: ready for the patient?.
        Hum Reprod. 2015; 30: 2014-2021
        • van Echten-Arends J.
        • Mastenbroek S.
        • Sikkema-Raddatz B.
        • Korevaar J.C.
        • Heineman M.J.
        • van der Veen F.
        • et al.
        Chromosomal mosaicism in human preimplantation embryos: a systematic review.
        Hum Reprod Update. 2011; 17: 620-627
        • Werner M.D.
        • Leondires M.P.
        • Schoolcraft W.B.
        • Miller B.T.
        • Copperman A.B.
        • Robins E.D.
        • et al.
        Clinically recognizable error rate after the transfer of comprehensive chromosomal screened euploid embryos is low.
        Fertil Steril. 2014; 102: 1613-1618
        • Gleicher N.
        • Vidali A.
        • Braverman J.
        • Kushnir V.A.
        • Barad D.H.
        • Hudson C.
        • et al.
        Accuracy of preimplantation genetic screening (PGS) is compromised by degree of mosaicism of human embryos.
        Reprod Biol Endocrinol. 2016; 14: 54
        • Mir P.
        • Mateu E.
        • Mercader A.
        • Herrer R.
        • Rodrigo L.
        • Vera M.
        • et al.
        Confirmation rates of array-CGH in day-3 embryo and blastocyst biopsies for preimplantation genetic screening.
        J Assist Reprod Genet. 2016; 33: 59-66
        • Capalbo A.
        • Wright G.
        • Elliott T.
        • Ubaldi F.M.
        • Rienzi L.
        • Nagy Z.P.
        FISH reanalysis of inner cell mass and trophectoderm samples of previously array-CGH screened blastocysts shows high accuracy of diagnosis and no major diagnostic impact of mosaicism at the blastocyst stage.
        Hum Reprod. 2013; 28: 2298-2307
        • Maxwell S.M.
        • Colls P.
        • Hodes-Wertz B.
        • McCulloh D.H.
        • McCaffrey C.
        • Wells D.
        • et al.
        Why do euploid embryos miscarry? A case-control study comparing the rate of aneuploidy within presumed euploid embryos that resulted in miscarriage or live birth using next-generation sequencing.
        Fertil Steril. 2016; 106: 1414-1419 .e5
        • Bazrgar M.
        • Gourabi H.
        • Valojerdi M.R.
        • Yazdi P.E.
        • Baharvand H.
        Self-correction of chromosomal abnormalities in human preimplantation embryos and embryonic stem cells.
        Stem Cells Dev. 2013; 22: 2449-2456
        • Sachdev N.M.
        • Maxwell S.M.
        • Besser A.G.
        • Grifo J.A.
        Diagnosis and clinical management of embryonic mosaicism.
        Fertil Steril. 2017; 107: 6-11
        • Wolf D.P.
        • Mitalipov N.
        • Mitalipov S.
        Mitochondrial replacement therapy in reproductive medicine.
        Trends Mol Med. 2015; 21: 68-76
        • Mitalipov S.
        • Wolf D.P.
        Clinical and ethical implications of mitochondrial gene transfer.
        Trends Endocrinol Metab. 2014; 25: 5-7
        • Hellebrekers D.M.
        • Wolfe R.
        • Hendrickx A.T.
        • de Coo I.F.
        • de Die C.E.
        • Geraedts J.P.
        • et al.
        PGD and heteroplasmic mitochondrial DNA point mutations: a systematic review estimating the chance of healthy offspring.
        Hum Reprod Update. 2012; 18: 341-349
        • Cohen J.
        • Scott R.
        • Alikani M.
        • Schimmel T.
        • Munné S.
        • Levron J.
        • et al.
        Ooplasmic transfer in mature human oocytes.
        Mol Hum Reprod. 1998; 4: 269-280
        • Darbandi S.
        • Darbandi M.
        • Khorram Khorshid H.R.
        • Sadeghi M.R.
        • Agarwal A.
        • Sengupta P.
        • et al.
        Ooplasmic transfer in human oocytes: efficacy and concerns in assisted reproduction.
        Reprod Biol Endocrinol. 2017; 15: 77
        • Dobler R.
        • Dowling D.K.
        • Morrow E.H.
        • Reinhardt K.
        A systematic review and meta-analysis reveals pervasive effects of germline mitochondrial replacement on components of health.
        Hum Reprod Update. 2018; 24: 519-534
        • Ethics Committee of the American Society for Reproductive Medicine
        Human somatic cell nuclear transfer (cloning).
        Fertil Steril. 2004; 82: S236-S239
        • Hendriks S.
        • Dondorp W.
        • de Wert G.
        • Hamer G.
        • Repping S.
        • Dancet E.A.
        Potential consequences of clinical application of artificial gametes: a systematic review of stakeholder views.
        Hum Reprod Update. 2015; 21: 297-309
        • Cibelli J.B.
        • Stice S.L.
        • Golueke P.J.
        • Kane J.J.
        • Jerry J.
        • Blackwell C.
        • et al.
        Cloned transgenic calves produced from nonquiescent fetal fibroblasts.
        Science. 1998; 280: 1256-1258
        • Onishi A.
        • Iwamoto M.
        • Akita T.
        • Mikawa S.
        • Takeda K.
        • Awata T.
        • et al.
        Pig cloning by microinjection of fetal fibroblast nuclei.
        Science. 2000; 289: 1188-1190
        • Polejaeva I.A.
        • Chen S.H.
        • Vaught T.D.
        • Page R.L.
        • Mullins J.
        • Ball S.
        • et al.
        Cloned pigs produced by nuclear transfer from adult somatic cells.
        Nature. 2000; 407: 86-90
        • Wakayama S.
        • Kohda T.
        • Obokata H.
        • Tokoro M.
        • Li C.
        • Terashita Y.
        • et al.
        Successful serial recloning in the mouse over multiple generations.
        Cell Stem Cell. 2013; 12: 293-297
        • Wakayama T.
        • Perry A.C.
        • Zuccotti M.
        • Johnson K.R.
        • Yanagimachi R.
        Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei.
        Nature. 1998; 394: 369-374
        • Wilmut I.
        • Schnieke A.E.
        • McWhir J.
        • Kind A.J.
        • Campbell K.H.
        Viable offspring derived from fetal and adult mammalian cells.
        Nature. 1997; 385: 810-813
        • Chung Y.G.
        • Eum J.H.
        • Lee J.E.
        • Shim S.H.
        • Sepilian V.
        • Hong S.W.
        • et al.
        Human somatic cell nuclear transfer using adult cells.
        Cell Stem Cell. 2014; 14: 777-780
        • Smith G.D.
        • Monteiro da Rocha A.
        Advances in embryo culture systems.
        Semin Reprod Med. 2012; 30: 214-221
        • van Rumste M.M.
        • Evers J.L.
        • Farquhar C.M.
        Intra-cytoplasmic sperm injection versus conventional techniques for oocyte insemination during in vitro fertilisation in patients with non-male subfertility.
        Cochrane Database Syst Rev. 2003; : CD001301
        • Teixeira D.M.
        • Barbosa M.A.
        • Ferriani R.A.
        • Navarro P.A.
        • Raine-Fenning N.
        • Nastri C.O.
        • et al.
        Regular (ICSI) versus ultra-high magnification (IMSI) sperm selection for assisted reproduction.
        Cochrane Database Syst Rev. 2013; : CD010167
        • McDowell S.
        • Kroon B.
        • Ford E.
        • Hook Y.
        • Glujovsky D.
        • Yazdani A.
        Advanced sperm selection techniques for assisted reproduction.
        Cochrane Database Syst Rev. 2014; : CD010461
        • Benkhalifa M.
        • Demirol A.
        • Sari T.
        • Balashova E.
        • Tsouroupaki M.
        • Giakoumakis Y.
        • et al.
        Autologous embryo-cumulus cells co-culture and blastocyst transfer in repeated implantation failures: a collaborative prospective randomized study.
        Zygote. 2012; 20: 173-180
        • Huang Z.
        • Li J.
        • Wang L.
        • Yan J.
        • Shi Y.
        • Li S.
        Brief co-incubation of sperm and oocytes for in vitro fertilization techniques.
        Cochrane Database Syst Rev. 2013; : CD009391
        • Carney S.K.
        • Das S.
        • Blake D.
        • Farquhar C.
        • Seif M.M.
        • Nelson L.
        Assisted hatching on assisted conception (in vitro fertilisation (IVF) and intracytoplasmic sperm injection (ICSI).
        Cochrane Database Syst Rev. 2012; : CD001894
        • Mantikou E.
        • Youssef M.A.
        • van Wely M.
        • van der Veen F.
        • Al-Inany H.G.
        • Repping S.
        • et al.
        Embryo culture media and IVF/ICSI success rates: a systematic review.
        Hum Reprod Update. 2013; 19: 210-220
        • Youssef M.M.
        • Mantikou E.
        • van Wely M.
        • Van der Veen F.
        • Al-Inany H.G.
        • Repping S.
        • et al.
        Culture media for human pre-implantation embryos in assisted reproductive technology cycles.
        Cochrane Database Syst Rev. 2015; 11: CD007876
        • Sfontouris I.A.
        • Martins W.P.
        • Nastri C.O.
        • Viana I.G.
        • Navarro P.A.
        • Raine-Fenning N.
        • et al.
        Blastocyst culture using single versus sequential media in clinical IVF: a systematic review and meta-analysis of randomized controlled trials.
        J Assist Reprod Genet. 2016; 33: 1261-1272
        • Bontekoe S.
        • Mantikou E.
        • van Wely M.
        • Seshadri S.
        • Repping S.
        • Mastenbroek S.
        Low oxygen concentrations for embryo culture in assisted reproductive technologies.
        Cochrane Database Syst Rev. 2012; : CD008950
        • Twisk M.
        • Mastenbroek S.
        • van Wely M.
        • Heineman M.J.
        • Van der Veen F.
        • Repping S.
        Preimplantation genetic screening for abnormal number of chromosomes (aneuploidies) in in vitro fertilisation or intracytoplasmic sperm injection.
        Cochrane Database Syst Rev. 2006; : CD005291
        • Armstrong S.
        • Arroll N.
        • Cree L.M.
        • Jordan V.
        • Farquhar C.
        Time-lapse systems for embryo incubation and assessment in assisted reproduction.
        Cochrane Database Syst Rev. 2015; : CD011320
        • Siristatidis C.S.
        • Sertedaki E.
        • Vaidakis D.
        • Varounis C.
        • Trivella M.
        Metabolomics for improving pregnancy outcomes in women undergoing assisted reproductive technologies.
        Cochrane Database Syst Rev. 2018; : CD011872
        • Glujovsky D.
        • Riestra B.
        • Sueldo C.
        • Fiszbajn G.
        • Repping S.
        • Nodar F.
        • et al.
        Vitrification versus slow freezing for women undergoing oocyte cryopreservation.
        Cochrane Database Syst Rev. 2014; : CD010047