Advertisement

Disruption of protein phosphatase 1 complexes with the use of bioportides as a novel approach to target sperm motility

Published:September 23, 2020DOI:https://doi.org/10.1016/j.fertnstert.2020.08.013

      Objective

      To design protein phosphatase 1 (PP1)–disrupting peptides covalently coupled to inert cell-penetrating peptides (CPPs) as sychnologically organized bioportide constructs as a strategy to modulate sperm motility.

      Design

      Experimental study.

      Setting

      Academic research laboratory.

      Patient(s)/Animal(s)

      Normozoospermic men providing samples for routine analysis and Holstein Frisian bulls.

      Intervention(s)

      None.

      Main Outcome Measure(s)

      Effect of the bioportides on the activity and interactions of PP1γ2—a PP1 isoform expressed exclusively in testicular germ cells and sperm—and on sperm vitality and motility.

      Result(s)

      PP1-disrupting peptides were designed based on the sequences from: 1) a sperm-specific PP1 interactor (A kinase anchor protein 4); and 2) a PP1 inhibitor (protein phosphatase inhibitor 2). Those sequences were covalently coupled to inert CPPs as bioportide constructs, which were successfully delivered to the flagellum of sperm cells to induce a marked impact on PP1γ2 activity and sperm motility. Molecular modeling studies further facilitated the identification of an optimized PP1-binding sequence and enabled the development of a modified stop-sperm bioportide with reduced size and increased potency of action. In addition, a bioportide mimetic of the unique 22-amino acid C-terminus of PP1γ2 accumulated within spermatozoa to significantly reduce sperm motility and further define the PP1γ2-specific interactome.

      Conclusion(s)

      These investigations demonstrate the utility of CPPs to deliver peptide sequences that target unique protein-protein interactions in spermatozoa to achieve a significant impact upon spermatozoa motility, a key prognostic indicator of male fertility.
      Disrupción de los complejos de la proteína fosfatasa 1 mediante el uso de biotransportadores como un nuevo enfoque para actuar sobre la motilidad espermática.

      Objetivo

      Diseñar péptidos perturbadores de la proteína fosfatasa 1 (PP1) acoplados covalentemente a péptidos inertes de penetración celular (CPP) como construcciones biotransportadoras como una estrategia para modular la motilidad espermática.

      Diseño

      Estudio experimental.

      Entorno

      Laboratorio académico de investigación.

      Paciente(s)/Animal(es)

      Hombres normozoospérmicos que proporcionan muestras para análisis de rutina y toros frisones Holstein.

      Intervención(es)

      Ninguna.

      Medida(s) de resultado principal(es)

      Efecto de los biotransportadores en la actividad e interacciones de las isoformas PP1γ2-a PP1 expresadas exclusivamente en las células germinales testiculares y el esperma, y sobre la vitalidad y la movilidad del esperma.

      Resultado(s)

      Los péptidos disruptores PP1 fueron diseñados en base a las secuencias de: 1) un interactor PP1 específico de los espermatozoides (una proteína de anclaje kinasa A tipo 4); y 2) un inhibidor de PP1 (inhibidor de la fosfatasa proteica 2). Esas secuencias fueron acopladas covalentemente a CPPs inertes como construcciones biotransportadoras, que llegaron con éxito al flagelo de los espermatozoides para inducir un marcado impacto en la actividad PP1γ2 y la motilidad espermática. Los estudios de modelización molecular facilitaron aún más la identificación de una secuencia optimizada de unión de PP1y permitió el desarrollo de un biotransportador espermático modificado con un tamaño reducido y una mayor potencia de acción. Además, el biotransportador mimético del aminoácido 22 C terminal de la isoforma PP1γ2 acumulado en los espermatozoides, reduce significativamente la motilidad espermática y define con más detalle el interactoma específico de la PPγ2.

      Conclusión(es)

      Estas investigaciones demuestran la utilidad de las CPP para obtener secuencias de péptidos que se dirigen a interacciones proteína- proteína en los espermatozoides para lograr un impacto significativo en la motilidadespermática, un indicador pronóstico clave de la fertilidad masculina.

      Key Words

      To read this article in full you will need to make a payment

      References

        • Population Division, Department of Economic and Social Affairs, United Nations
        World contraceptive use 2018.
        (Available at:)
        • Bearak J.
        • Popinchalk A.
        • Alkema L.
        • Sedgh G.
        Global, regional, and subregional trends in unintended pregnancy and its outcomes from 1990 to 2014: estimates from a bayesian hierarchical model.
        Lancet Glob Health. 2018; 6: e380-e389
        • Thirumalai A.
        • Page S.T.
        Recent developments in male contraception.
        Drugs. 2019; 79: 11-20
        • Page S.T.
        • Amory J.K.
        Male hormonal contraceptive—are we there yet?.
        Nat Rev Endocrinol. 2018; 14: 685-686
        • CONRAD
        Male hormonal contraceptive trial ending early.
        (2011. Available at:)
        • Arifuzzaman S.
        • Rahman M.S.
        • Pang M.-G.
        Research update and opportunity of nonhormonal male contraception: histone demethylase KDM5B–based targeting.
        Pharmacol Res. 2019; 141: 1-20
        • Freitas M.J.
        • Vijayaraghavan S.
        • Fardilha M.
        Signaling mechanisms in mammalian sperm motility.
        Biol Reprod. 2017; 96: 2-12
        • Verbinnen I.
        • Ferreira M.
        • Bollen M.
        Biogenesis and activity regulation of protein phosphatase 1.
        Biochem Soc Trans. 2017; 45: 89-99
        • Fardilha M.
        • Esteves S.L.C.
        • Korrodi-Gregório L.
        • da Cruz e Silva O.A.B.
        • da Cruz e Silva F.F.
        The physiological relevance of protein phosphatase 1 and its interacting proteins to health and disease.
        Curr Med Chem. 2010; 17: 3996-4017
        • Smith G.D.
        • Wolf D.P.
        • Trautman K.C.
        • da Cruz e Silva E.F.
        • Greengard P.
        • Vijayaraghavan S.
        Primate sperm contain protein phosphatase 1, a biochemical mediator of motility.
        Biol Reprod. 1996; 54: 719-727
        • Vijayaraghavan S.
        • Stephens D.T.
        • Trautman K.
        • Smith G.D.
        • Khatra B.
        • da Cruz e Silva E.F.
        • et al.
        Sperm motility development in the epididymis is associated with decreased glycogen synthase kinase-3 and protein phosphatase 1 activity.
        Biol Reprod. 1996; 54: 709-718
      1. Smith GD, Wolf DP, Trautman KC, Vijayaraghavan S. Motility potential of macaque epididymal sperm: the role of protein phosphatase and glycogen synthase kinase-3 activities. J Androl 20:47–53.

        • Varmuza S.
        • Jurisicova A.
        • Okano K.
        • Hudson J.
        • Boekelheide K.
        • Shipp E.B.
        Spermiogenesis is impaired in mice bearing a targeted mutation in the protein phosphatase 1cγ gene.
        Dev Biol. 1999; 205: 98-110
        • Sinha N.
        • Pilder S.
        • Vijayaraghavan S.
        Significant expression levels of transgenic PPP1CC2 in testis and sperm are required to overcome the male infertility phenotype of Ppp1cc null mice.
        PLoS One. 2012; 7e47623
        • Gregorio L.K.
        • Esteves S.L.C.
        • Fardilha M.
        • Korrodi-Gregório L.
        • Esteves S.L.C.
        • Fardilha M.
        • et al.
        Protein phosphatase 1 catalytic isoforms: specificity toward interacting proteins.
        Transl Res. 2014; 164: 366-391
        • Silva J.V.
        • Korrodi-Gregório L.
        • Luers G.
        • Cardoso M.J.
        • Patrício A.
        • Maia N.
        • et al.
        Characterisation of several ankyrin repeat protein variant 2, a phosphoprotein phosphatase 1–interacting protein, in testis and spermatozoa.
        Reprod Fertil Dev. 2016; 28: 1009-1019
        • Browne G.J.
        • Fardilha M.
        • Oxenham S.K.
        • Wu W.
        • Helps N.R.
        • da Cruz E Silva O.A.B.
        • et al.
        SARP, a new alternatively spliced protein phosphatase 1 and DNA interacting protein.
        Biochem J. 2007; 402: 187-196
        • Fardilha M.
        • Esteves S.L.C.
        • Korrodi-Gregório L.
        • Vintém A.P.
        • Domingues S.C.
        • Rebelo S.
        • et al.
        Identification of the human testis protein phosphatase 1 interactome.
        Biochem Pharmacol. 2011; 82: 1403-1415
        • Korrodi-Gregorio L.
        • Vieira S.I.
        • Esteves S.L.C.
        • Silva J.V.
        • Freitas M.J.
        • Brauns A.-K.K.
        • et al.
        TCTEX1D4, a novel protein phosphatase 1 interactor: connecting the phosphatase to the microtubule network.
        Biol Open. 2013; 2: 453-465
      2. Korrodi-Gregório L, Ferreira M, Vintém AP, Wu W, Muller T, Marcus K, et al. Identification and characterization of two distinct PPP1R2 isoforms in human spermatozoa. 2013;14:15.

        • Wu D.
        • de Wever V.
        • Derua R.
        • Winkler C.
        • Beullens M.
        • van Eynde A.
        • et al.
        A substrate-trapping strategy for protein phosphatase PP1 holoenzymes using hypoactive subunit fusions.
        J Biol Chem. 2018; 293: 15152-15162
        • Ceulemans H.
        • Bollen M.
        Functional diversity of protein phosphatase-1, a cellular economizer and reset button.
        Physiol Rev. 2004; 84: 1-39
        • Silva J.V.
        • Yoon S.
        • de Bock P.-J.
        • Goltsev A.V.
        • Gevaert K.
        • Mendes J.F.F.
        • et al.
        Construction and analysis of a human testis/sperm-enriched interaction network: unraveling the PPP1CC2 interactome.
        Biochim Biophys Acta Gen Subj. 2017; 1861: 375-385
        • Moretti E.
        • Scapigliati G.
        • Pascarelli N.A.
        • Baccetti B.
        • Collodel G.
        Localization of AKAP4 and tubulin proteins in sperm with reduced motility.
        Asian J Androl. 2007; 9: 641-649
        • Miki K.
        • Willis W.D.
        • Brown P.R.
        • Goulding E.H.
        • Fulcher K.D.
        • Eddy E.M.
        Targeted disruption of the Akap4 gene causes defects in sperm flagellum and motility.
        Dev Biol. 2002; 248: 331-342
        • Huang Z.
        • Somanath P.R.
        • Chakrabarti R.
        • Eddy E.M.
        • Vijayaraghavan S.
        Changes in intracellular distribution and activity of protein phosphatase PP1γ2 and its regulating proteins in spermatozoa lacking AKAP4.
        Biol Reprod. 2005; 72: 384-392
        • Hendrickx A.
        • Beullens M.
        • Ceulemans H.
        • den Abt T.
        • van Eynde A.
        • Nicolaescu E.
        • et al.
        Docking motif-guided mapping of the interactome of protein phosphatase-1.
        Chem Biol. 2009; 16: 365-371
        • Heroes E.
        • Lesage B.
        • Görnemann J.
        • Beullens M.
        • van Meervelt L.
        • Bollen M.
        The PP1 binding code: a molecular-lego strategy that governs specificity.
        FEBS J. 2013; 280: 584-595
        • Chatterjee J.
        • Beullens M.
        • Sukackaite R.
        • Qian J.
        • Lesage B.
        • Hart D.J.
        • et al.
        Development of a peptide that selectively activates protein phosphatase-1 in living cells.
        Angew Chem Int Ed Engl. 2012; 51: 10054-10059
        • Ammosova T.
        • Platonov M.
        • Yedavalli V.R.K.
        • Obukhov Y.
        • Gordeuk V.R.
        • Jeang K.-T.
        • et al.
        Small molecules targeted to a non-catalytic “RVxF” binding site of protein phosphatase-1 inhibit HIV-1.
        PLoS One. 2012; 7e39481
        • Trebacz M.
        • Wang Y.
        • Makotta L.
        • Henschke L.
        • Köhn M.
        Development of a photoactivatable protein phosphatase-1–disrupting peptide.
        J Org Chem. 2020; 85: 1712-1717
        • Wang Y.
        • Hoermann B.
        • Pavic K.
        • Trebacz M.
        • Rios P.
        • Köhn M.
        Interrogating PP1 activity in the MAPK pathway with optimized PP1-disrupting peptides.
        Chembiochem. 2019; 20: 66-71
        • Jones S.
        • Lukanowska M.
        • Suhorutsenko J.
        • Oxenham S.
        • Barratt C.
        • Publicover S.
        • et al.
        Intracellular translocation and differential accumulation of cell-penetrating peptides in bovine spermatozoa: evaluation of efficient delivery vectors that do not compromise human sperm motility.
        Hum Reprod. 2013; 28: 1874-1889
        • Dinca A.
        • Chien W.-M.
        • Chin M.
        Intracellular delivery of proteins with cell-penetrating peptides for therapeutic uses in human disease.
        Int J Mol Sci. 2016; 17: 263
        • Howl J.
        • Matou-Nasri S.
        • West D.C.
        • Farquhar M.
        • Slaninová J.
        • Östenson C.G.
        • et al.
        Bioportide: an emergent concept of bioactive cell-penetrating peptides.
        Cell Mol Life Sci. 2012; 69: 2951-2966
        • Howl J.
        • Jones S.
        Insights into the molecular mechanisms of action of bioportides: a strategy to target protein-protein interactions.
        Expert Rev Mol Med. 2015; 17: e1
        • Lukanowska M.
        • Howl J.
        • Jones S.
        Bioportides: Bioactive cell-penetrating peptides that modulate cellular dynamics.
        Biotechnol J. 2013; 8: 918-930
        • Howl J.
        • Jones S.
        Protein mimicry and the design of bioactive cell-penetrating peptides.
        in: Langel Ü. Cell-Penetrating Peptides: Methods and Protocols. Springer, New York2015: 177-190
        • Palasek S.A.
        • Cox Z.J.
        • Collins J.M.
        Limiting racemization and aspartimide formation in microwave-enhanced Fmoc solid phase peptide synthesis.
        J Pept Sci. 2007; 13: 143-148
        • Jones S.
        • Osman S.
        • Howl J.
        A high-throughput synthetic platform enables the discovery of proteomimetic cell penetrating peptides and bioportides.
        Int J Pept Res Ther. 2019; 25: 1-8
        • Jones S.
        • Martel C.
        • Belzacq-Casagrande A.S.
        • Brenner C.
        • Howl J.
        Mitoparan and target-selective chimeric analogues: Membrane translocation and intracellular redistribution induces mitochondrial apoptosis.
        Biochim Biophys Acta Mol Cell Res. 2008; 1783: 849-863
        • Holm T.
        • Johansson H.
        • Lundberg P.
        • Pooga M.
        • Lindgren M.
        • Langel U.
        Studying the uptake of cell-penetrating peptides.
        Nat Protoc. 2006; 1: 1001-1005
        • Iqbal M.
        • Aleem M.
        • Ijaz A.
        • Rehman H.
        • Yousaf M.S.
        Assessment of buffalo semen with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction assay.
        J Anim Sci. 2010; 88: 922-925
        • Case D.
        • Darden T.
        • Cheatham T.
        • Simmerling C.
        • Wang J.
        • Duke R.
        • et al.
        Amber 14 Reference Manual.
        (San Francisco. 2014.)2014 (Available at)
        • Maier J.A.
        • Martinez C.
        • Kasavajhala K.
        • Wickstrom L.
        • Hauser K.E.
        • Simmerling C.
        ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB.
        J Chem Theory Comput. 2015; 11: 3696-3713
        • Berendsen H.J.C.
        • Postma J.P.M.
        • van Gunsteren W.F.
        • DiNola A.
        • Haak J.R.
        Molecular dynamics with coupling to an external bath.
        J Chem Phys. 1984; 81: 3684-3690
        • Daura X.
        • van Gunsteren W.F.
        • Mark A.E.
        Folding-unfolding thermodynamics of a β-heptapeptide from equilibrium simulations.
        Proteins Struct Funct Genet. 1999; 34: 269-280
        • Dorigo M.
        • Gambardella L.M.
        Ant colony system: a cooperative learning approach to the traveling salesman problem.
        IEEE Trans Evol Comput. 1997; 1: 53-66
        • Donsky E.
        • Wolfson H.J.
        PepCrawler: a fast RRT-like algorithm for high-resolution refinement and binding-affinity estimation of peptide inhibitors.
        in: Przytycka T.M. Sagot M.-F. Algorithms in Bioinformatics: 11th International Workshop, WABI 2011, Saarbrücken, Germany, September 5–7, 2011, Proceedings. Springer, Berlin, Heidelberg2011: 73-75
        • Jorgensen W.L.
        • Chandrasekhar J.
        • Madura J.D.
        • Impey R.W.
        • Klein M.L.
        Comparison of simple potential functions for simulating liquid water.
        J Chem Phys. 1983; 79: 926-935
        • Schrödinger
        Maestro.
        (Available at:)
        • Shannon P.
        • Markiel A.
        • Ozier O.
        • Baliga N.S.
        • Wang J.T.
        • Ramage D.
        • et al.
        Cytoscape: a software environment for integrated models of biomolecular interaction networks.
        Genome Res. 2003; 13: 2498-2504
        • Zaidman D.
        • Wolfson H.J.
        PinaColada: peptide-inhibitor ant colony ad-hoc design algorithm.
        Bioinformatics. 2016; 32: 2289-2296
        • Keilhauer E.C.
        • Hein M.Y.
        • Mann M.
        Accurate protein complex retrieval by affinity enrichment mass spectrometry (AE-MS) rather than affinity purification mass spectrometry (AP-MS).
        Mol Cell Proteomics. 2015; 14: 120-135
        • Santiago Silva
        • Fardilha
        • Santiago J.
        • Silva J.V.
        • Fardilha M.
        First insights on the presence of the unfolded protein response in human spermatozoa.
        Int J Mol Sci. 2019; 20: 5518
        • Egloff M.-P.
        Structural basis for the recognition of regulatory subunits by the catalytic subunit of protein phosphatase 1.
        EMBO J. 1997; 16: 1876-1887
        • Fischer T.H.
        • Eiringhaus J.
        • Dybkova N.
        • Saadatmand A.
        • Pabel S.
        • Weber S.
        • et al.
        Activation of protein phosphatase 1 by a selective phosphatase disrupting peptide reduces sarcoplasmic reticulum Ca2+ leak in human heart failure.
        Eur J Heart Fail. 2018; 20: 1673-1685
        • Sinha N.
        • Puri P.
        • Nairn A.C.
        • Vijayaraghavan S.
        Selective ablation of Ppp1cc gene in testicular germ cells causes oligo-teratozoospermia and infertility in mice.
        Biol Reprod. 2013; 89: 128
        • Dudiki T.
        • Joudeh N.
        • Sinha N.
        • Goswami S.
        • Eisa A.
        • Kline D.
        • et al.
        The protein phosphatase isoform PP1γ1 substitutes for PP1γ2 to support spermatogenesis but not normal sperm function and fertility.
        Biol Reprod. 2019; 100: 721-736
        • Hrabchak C.
        • Varmuza S.
        Identification of the spermatogenic zip protein Spz1 as a putative protein phosphatase-1 (PP1) regulatory protein that specifically binds the PP1cγ2 splice variant in mouse testis.
        J Biol Chem. 2004; 279: 37079-37086
        • Hrabchak C.
        • Henderson H.
        • Varmuza S.
        A testis specific isoform of endophilin B1, endophilin B1t, interacts specifically with protein phosphatase-1cγ2 in mouse testis and is abnormally expressed in PP1cγ null mice.
        Biochemistry. 2007; 46: 4635-4644
        • Matsuura M.
        • Yogo K.
        TMEM225: a possible protein phosphatase 1γ2 (PP1γ2) regulator localizes to the equatorial segment in mouse spermatozoa.
        Mol Reprod Dev. 2015; 82: 139-148
        • Zahid M.
        • Robbins P.
        Cell-type specific penetrating peptides: therapeutic promises and challenges.
        Molecules. 2015; 20: 13055-13070