Advertisement

Role of the sperm, oocyte, and embryo in recurrent pregnancy loss

      Disorders affecting the sperm, oocyte, or embryo may cause a significant fraction of spontaneous miscarriages and cases of recurrent pregnancy loss (RPL). Altered chromosomal integrity of sperm and oocytes, which is highly dependent of the age of the mother, represents a major cause of miscarriage and in turn RPL. Avoiding transfers of abnormal embryos is possible with preimplantation genetic testing for aneuploidies. Chromosomal anomalies may also be caused by structural rearrangements of one or several chromosomes in either parents, a finding encountered in 12% of couples with RPL, including in those who have had one or several healthy babies. More than 40% of these chromosomal rearrangements are identifiable on regular karyotypes. When abnormal findings are made, preimplantation genetic testing for monogenic disorders allows selection of disease-free embryos. Finally, asymmetric inactivation of the X chromosome has been found more commonly in women with RPL, but no specific treatment is currently available.

      Key Words

      To read this article in full you will need to make a payment

      References

        • Levy B.
        • Sigurjonsson S.
        • Pettersen B.
        • Maisenbacher M.K.
        • Hall M.P.
        • Demko Z.
        • et al.
        Genomic imbalance in products of conception: single-nucleotide polymorphism chromosomal microarray analysis.
        Obstet Gynecol. 2014; 124: 202-209
        • Romero S.T.
        • Geiersbach K.B.
        • Paxton C.N.
        • Rose N.C.
        • Schisterman E.F.
        • Branch D.W.
        • et al.
        Differentiation of genetic abnormalities in early pregnancy loss.
        Ultrasound Obstet Gynecol. 2015; 45: 89-94
        • Soler A.
        • Morales C.
        • Mademont-Soler I.
        • Margarit E.
        • Borrell A.
        • Borobio V.
        • et al.
        Overview of chromosome abnormalities in first trimester miscarriages: a series of 1,011 consecutive chorionic villi sample karyotypes.
        Cytogenet Genome Res. 2017; 152: 81-89
        • Larson K.L.
        • DeJonge C.J.
        • Barnes A.M.
        • Jost L.K.
        • Evenson D.P.
        Sperm chromatin structure assay parameters as predictors of failed pregnancy following assisted reproductive techniques.
        Hum Reprod. 2000; 15: 1717-1722
        • McQueen D.B.
        • Zhang J.
        • Robins J.C.
        Sperm DNA fragmentation and recurrent pregnancy loss: a systematic review and meta-analysis.
        Fertil Steril. 2019; 112: 54-60.e3
        • Kim G.Y.
        What should be done for men with sperm DNA fragmentation?.
        Clin Exp Reprod Med. 2018; 45: 101-109
        • Ramasamy R.
        • Scovell J.M.
        • Kovac J.R.
        • Cook P.J.
        • Lamb D.J.
        • Lipshultz L.I.
        Fluorescence in situ hybridization detects increased sperm aneuploidy in men with recurrent pregnancy loss.
        Fertil Steril. 2015; 103: 906-909.e1
        • Stern C.
        • Pertile M.
        • Norris H.
        • Hale L.
        • Baker H.W.
        Chromosome translocations in couples with in-vitro fertilization implantation failure.
        Hum Reprod. 1999; 14: 2097-2101
        • Rubio C.
        • Buendía P.
        • Rodrigo L.
        • Mercader A.
        • Mateu E.
        • Peinado V.
        • et al.
        Prognostic factors for preimplantation genetic screening in repeated pregnancy loss.
        Reprod Biomed Online. 2009; 18: 687-693
        • Samuel R.
        • Feng H.
        • Jafek A.
        • Despain D.
        • Jenkins T.
        • Gale B.
        Microfluidic-based sperm sorting & analysis for treatment of male infertility.
        Transl Androl Urol. 2018; 7: S336-S347
        • Said T.M.
        • Agarwal A.
        • Grunewald S.
        • Rasch M.
        • Glander H.J.
        • Paasch U.
        Evaluation of sperm recovery following annexin V magnetic-activated cell sorting separation.
        Reprod Biomed Online. 2006; 13: 336-339
        • Komoda T.
        • Matsunaga T.
        Biotechnological study.
        in: Komoda T. Matsunaga T. Biochemistry for medical professionals. Academic Press, Boston2015: 75-92
        • Mittal S.
        • Mielnik A.
        • Bolyakov A.
        • Schlegel P.
        • Paduch D.
        PD68–01 Pilot study results using fluorescence activated cell sorting of spermatozoa from testis tissue: a novel method for sperm isolation after TESE (abstract).
        J Urol. 2017; 197: e1339
        • Teixeira D.M.
        • Hadyme Miyague A.
        • Barbosa M.A.
        • Navarro P.A.
        • Raine-Fenning N.
        • Nastri C.O.
        • et al.
        Regular (ICSI) versus ultra-high magnification (IMSI) sperm selection for assisted reproduction.
        Cochrane Database Syst Rev. 2020; 2CD010167
        • Huszar G.
        • Jakab A.
        • Sakkas D.
        • Ozenci C.C.
        • Cayli S.
        • Delpiano E.
        • et al.
        Fertility testing and ICSI sperm selection by hyaluronic acid binding: clinical and genetic aspects.
        Reprod Biomed Online. 2007; 14: 650-663
        • Lepine S.
        • McDowell S.
        • Searle L.M.
        • Kroon B.
        • Glujovsky D.
        • Yazdani A.
        Advanced sperm selection techniques for assisted reproduction.
        Cochrane Database Syst Rev. 2019; 7CD010461
        • Krawetz S.A.
        Paternal contribution: new insights and future challenges.
        Nat Rev Genet. 2005; 6: 633-642
        • Hammoud S.S.
        • Nix D.A.
        • Zhang H.
        • Purwar J.
        • Carrell D.T.
        • Cairns B.R.
        Distinctive chromatin in human sperm packages genes for embryo development.
        Nature. 2009; 460: 473-478
        • Jenkins T.G.
        • Carrell D.T.
        The sperm epigenome and potential implications for the developing embryo.
        Reproduction. 2012; 143: 727-734
        • Jenkins T.G.
        • Carrell D.T.
        The paternal epigenome and embryogenesis: poising mechanisms for development.
        Asian J Androl. 2011; 13: 76-80
        • Ostermeier G.C.
        • Miller D.
        • Huntriss J.D.
        • Diamond M.P.
        • Krawetz S.A.
        Reproductive biology: delivering spermatozoan RNA to the oocyte.
        Nature. 2004; 429: 154
        • Carrell D.T.
        Contributions of spermatozoa to embryogenesis: assays to evaluate their genetic and epigenetic fitness.
        Reprod Biomed Online. 2008; 16: 474-484
        • Bonache S.
        • Mata A.
        • Ramos M.D.
        • Bassas L.
        • Larriba S.
        Sperm gene expression profile is related to pregnancy rate after insemination and is predictive of low fecundity in normozoospermic men.
        Hum Reprod. 2012; 27: 1556-1567
        • García-Herrero S.
        • Meseguer M.
        • Martínez-Conejero J.A.
        • Remohí J.
        • Pellicer A.
        • Garrido N.
        The transcriptome of spermatozoa used in homologous intrauterine insemination varies considerably between samples that achieve pregnancy and those that do not.
        Fertil Steril. 2010; 94: 1360-1373
        • Jodar M.
        • Sendler E.
        • Moskovtsev S.I.
        • Librach C.L.
        • Goodrich R.
        • Swanson S.
        • et al.
        Absence of sperm RNA elements correlates with idiopathic male infertility.
        Sci Transl Med. 2015; 7: 295re6
        • Aston K.I.
        • Uren P.J.
        • Jenkins T.G.
        • Horsager A.
        • Cairns B.R.
        • Smith A.D.
        • et al.
        Aberrant sperm DNA methylation predicts male fertility status and embryo quality.
        Fertil Steril. 2015; 104: 1388-1397.e1–5
        • Cheung S.
        • Parrella A.
        • Rosenwaks Z.
        • Palermo G.D.
        Genetic and epigenetic profiling of the infertile male.
        PloS One. 2019; 14e0214275
        • Nugyen N.M.P.
        • Ge Z.
        • Reddy R.
        • Fahiminiya S.
        • Sauthier S.
        • Bagga R.
        Causative Mutations and Mechanism of Androgenetic Hydatidiform Moles.
        Am J Hum Genet. 2018; 103: 740-751
        • Kuliev A.
        • Cieslak J.
        • Ilkevitch Y.
        • Verlinsky Y.
        Chromosomal abnormalities in a series of 6,733 human oocytes in preimplantation diagnosis for age-related aneuploidies.
        Reprod Biomed Online. 2003; 6: 54-59
        • Morin S.J.
        • Eccles J.
        • AmandaIturriaga L.C.G.C.
        • Zimmerman R.S.
        Translocations, inversions and other chromosome rearrangements.
        Fertil Steril. 2017; 107: 19-26
        • Simón C.
        • Rubio C.
        • Vidal F.
        • Gimenez C.
        • Moreno C.
        • Parrilla J.J.
        • et al.
        Increased chromosome abnormalities in human preimplantation embryos after in-vitro fertilization in patients with recurrent miscarriage.
        Reprod Fertil Dev. 1998; 10: 87-92
        • Fragouli E.
        • Spath K.
        • Alfarawati S.
        • Kaper F.
        • Craig A.
        • Michel C.-E.
        • et al.
        Altered levels of mitochondrial DNA are associated with female age, aneuploidy, and provide an independent measure of embryonic implantation potential.
        PLoS Genet. 2015; 11e1005241
        • Scott III, R.T.
        • Sun L.
        • Zhan Y.
        • Marin D.
        • Tao X.
        • Seli E.
        Mitochondrial DNA content is not predictive of reproductive competence in euploid blastocysts.
        Reproductive BioMedicine Online. 2020; 41: 183-190
        • Marin D.
        • Scott Jr., R.T.
        • Treff N.R.
        Preimplantation embryonic mosaicism: origin, consequences and the reliability of comprehensive chromosome screening.
        Curr Opin Obstet Gynecol. 2017; 29: 168-174
        • Treff N.R.
        • Levy B.
        • Su J.
        • Northrop L.
        • Tao X.
        • Scott R.T.
        SNP Microarray based 24 chromosome aneuploidy screening is significantly more consistent than FISH.
        Mol Hum Reprod. 2010; 16: 583-589
        • Babariya D.
        • Fragouli E.
        • Alfarawati E.
        • Spath K.
        • Wells D.
        The incidence and origin of segmental aneuploidy in human oocytes and preimplantation embryos.
        Hum Reprod. 2017; 2017: 2549-2560
        • Treff N.R.
        • Franasiak J.M.
        Detection of segmental aneuploidy and mosaicism in the human preimplantation embryo: technical considerations and limitations.
        Fertil Steril. 2017; 107: 27-31
        • Tiegs A.W.
        • Tao X.
        • Zhan Y.
        • Whitehead C.
        • Kim J.A.
        • Hanson B.
        A multicenter, prospective, blinded, non-selection study evaluating the predictive value of an aneuploid diagnosis using a targeted next-generation sequencing -based preimplantation genetic testing for aneuploidy assay and impact of biopsy.
        Fertil Steril. 2021; 115: 627-637
        • Priya P.K.
        • Mishra V.V.
        • Roy P.
        • Patel H.
        A study on balanced chromosomal translocations in couples with recurrent pregnancy loss.
        J Hum Reprod Sci. 2018; 11 (337-34)
        • Anton E.
        • Vidal F.
        • Blanco J.
        Reciprocal translocations: tracing their meiotic behavior.
        Genet Med. 2008; 10: 730-738
        • Sierra S.
        • Stephenson M.
        Genetics of recurrent pregnancy loss.
        Semin Reprod Med. 2006; 24: 17-24
        • Sullivan E.
        • Lewis T.
        • Stephenson M.
        • Odem R.
        • Schreiber J.
        • Ober C.
        • et al.
        Pregnancy outcome in recurrent miscarriage patients with skewed X chromosome inactivation.
        Obstet Gynecol. 2003; 101: 1236-1242
        • Beever C.L.
        • Stephenson M.D.
        • Penaherrera R.H.
        • Jiang R.H.
        • Kalousek D.K.
        • Hayden M.
        • et al.
        Skewed X-chromosome inactivation is associated with trisomy in women ascertained on the basis of recurrent spontaneous abortion or chromosomally abnormal pregnancies.
        Am J Hum Genetics. 2003; 72: 399-407